41 Attenuators

At the end of this chapter you should be able to:

e understand the function of an attenuator

e understand characteristic impedance and calculate for given
values

e appreciate and calculate logarithmic ratios

e design symmetrical T and symmetrical 7 attenuators given
required attenuation and characteristic impedance

e appreciate and calculate insertion loss

e determine iterative and image impedances for asymmetrical T
and m networks

e appreciate and design the L-section attenuator
e calculate attenuation for two-port networks in cascade

41.1 Introduction An attenuator is a device for introducing a specified loss between a signal
source and a matched load without upsetting the impedance relationship
necessary for matching. The loss introduced is constant irrespective
of frequency; since reactive elements (L or C) vary with frequency, it
follows that ideal attenuators are networks containing pure resistances. A

A Zg fixed attenuator section is usually known as a “pad’.
o— —o Attenuation i1s a reduction in the magnitude of a voltage or current
due to its transmission over a line or through an attenuator. Any degree
of attenuation may be achieved with an attenuator by suitable choice of
resistance values but the input and output impedances of the pad must
be such that the impedance conditions existing in the circuit into which
l o it is connected are not disturbed. Thus an attenuator must provide the

Cr

@) correct ?nput and output impedances as well as providing the required

attenuation.
Z5 Attenuation sections are made up of resistances connected as T or 7

= I T = arrangements (as introduced in Chapter 34).
7 Z: Two-port networks

Networks in which electrical energy is fed in at one pair of terminals and
o l l o taken out at a second pair of terminals are called two-port networks.
(b) Thus an attenuator is a two-port network, as are transmission lines,
transformers and electronic amplifiers. The network between the input
Figure 41.1 (a) T-nerwork, port and the output port is a transmission network for which a known
(b) m-network relationship exists between the input and output currents and voltages. If
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Figure 41.2 (a) Balanced

T-network, (b) Balanced
w-network

41.2 Characteristic
impedance

a network contains only passive circuit elements, such as in an attenuator,
the network is said to be passive; if a network contains a source of e.m.f.,
such as in an electronic amplifier, the network is said to be active.

Figure 41.1(a) shows a T-network, which 1s termed symmetrical if
Z, = Zy and Figure 41.1(b) shows a m-network which i1s symmetrical if
Zp=Zp. lf Z4 # Zg In Figure 41.1(a) and Zg # Zr in Figure 41.1(b),
the sections are termed asymmetrical. Both networks shown have one
common terminal, which may be earthed, and are therefore said to
be unbalanced. The balanced form of the T-network is shown in
Figure 41.2(a) and the balanced form of the m-network is shown in
Figure 41.2(b).

Symmetrical T- and m-attenuators are discussed in Section 41.4 and
asymmetrical attenuators are discussed in Sections 41.6 and 41.7. Before
this it is important to understand the concept of characteristic impedance,
which 1s explained generally in Section 41.2 (characteristic impedances
will be used again in Chapter 44), and logarithmic units, discussed in
Section 41.3. Another important aspect of attenuators, that of insertion
loss, 1s discussed in Section 41.5. To obtain greater attenuation, sections
may be connected in cascade, and this 1s discussed in Section 41.8.

The input impedance of a network is the ratio of voltage to current (in
complex form) at the input terminals. With a two-port network the input
impedance often varies according to the load impedance across the output
terminals. For any passive two-port network it 1s found that a particular
value of load impedance can always be found which will produce an
input impedance having the same value as the load impedance. This is
called the iterative impedance for an asymmetrical network and its value
depends on which pair of terminals is taken to be the mput and which
the output (there are thus two values of iterative impedance, one for each
direction). For a symmetrical network there is only one value for the
iterative impedance and this is called the characteristic impedance of
the symmetrical two-port network. Let the characteristic impedance be
denoted by Z. Figure 41.3 shows a symmetrical T-network terminated
in an impedance Zj.

Let the impedance ‘looking-in’ at the input port also be Z;. Then
Vi/li = Zy = V> /I in Figure 41.3. From circuit theory,

Vv Lp(Zs+ 2
Zn=—'=Zﬂ+ B(Z4 0)
lr] ZH+ZA+ZEI

, since (Z4 + Zy) 1s n parallel with Zg,

_ Zi+ZaZp+ZaZy+ ZaZy + ZpZ,

i+ Zp+ 2y
. “ Z Zi + ZZAZB +ZAZ{} +ZBZ.[;
1.E. —
% it LTy
Thus Zo(Za+Zp+Zo) = Z3 +2ZaZp + ZaZy + Z3Z,

ZoZy+ ZoZp + Z3 = Z3 +2ZZp + ZpZo + ZpZ,
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ie., Zp=2Z;+2Z4Zp, from which

characteristic impedance, | Z, = \/ (Z} +2Z,7p) (41.1)

[f the output terminals of Figure 41.3 are open-circuited, then the open-
circuit impedance, Zge = Z4 + Zg. If the output terminals of Figure 41.3
are short-circuited, then the short-circuit impedance,

ZAaZp Zi 4+ 2ZAZg
Za+Zp  Za+Zs

Lsce =ZLa+

Z2 + 27474
Z_;l 5 iB

Thus ZocZsc = (Za + Zp) ( ) =73+ 2ZAZsp

Comparing this with equation (41.1) gives

Zy = (ZocZsc). (41.2)

Figure 41.4 shows a m-network terminated In an

impedance Z;.

symmetrical
If the impedance ‘looking in’ at the input port is also Z;, then
Vv

—_ = Zy = (Z,) in parallel with [Z, in series with (Z; and Z,)

I in parallel]

. N | YAYA)
= (Z,) in parallel with |Z, +

Zo+ 25

= (£,) in parallel with

PAVA R AVA R ZﬁZgj|
Lo+ Z»

_ (Z2)(Z1Zo + 212> + ZoZ>r) [ (Zo + Z3))
 Za 4 ((ZhZo 4 Z1Z2 + Z0Z2) [ (Zo + Z5))

1.e.., Zo

B (Z\Z2Zo + Z)\Z5 + ZoZ3)/(Zo + Z5)
 (ZaZo+ ZE 4 Z0\Zo 4+ Z1Zr 4 ZoZ) [(Zy + Z5)

_ ZyZyZo+ 2,75 4 275
 Z3 4272704+ Z1Zg 4 Z,2Z,

1.e. Lo

Thus  Zo(Z3 +2Z2Z0 + Z1Zo + Z1Z:) = Z1Z2Zo + Z1Z5 + ZoZ3
27,72 + 7,7 = Z,73

from which

(41.3)

a' 72
characteristic impedance, Z, :V' ( Z12; )

21+ 2Z;
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If the output terminals of Figure 41.4 are open-circuited, then the open-
circuit impedance,

Loy + Z5) Lr(Zy+ £1)
v B S T O O B A

ac —

If the output terminals of Figure 41.4 are short-circuited, then the short-
circuit impedance,

VYA
Zse = ——
L1+ £
Thus
VALVAR AV N AYA 77
Loclsec = ( =
[Z]—Fzz;] Z1+ Z- Zl-l-EZg

Comparing this expression with equation (41.3) gives

Zy = V(ZocZsc), (41.2)

which is the same as equation (41.2).

Thus the characteristic impedance Z; is given by Zy = /(ZgcZsc)
whether the network i1s a symmetrical T or a symmetrical .

Equations (41.1) to (41.3) are used later in this chapter.

41.3 Logarithmic ratios The ratio of two powers P, and P, may be expressed in logarithmic form
as shown in Chapter 10.
Let P; be the input power to a system and P> the output power.
If logarithms to base 10 are used, then the ratio is said to be in bels,
1.e., power ratio in bels = Ig(P>/P;). The bel 1s a large unit and the
decibel (dB) 1s more often used, where 10 decibels = 1 bel, 1.e.,

P
power ratio in decibels = 101g F"' (41.4)
1

For example:

P,/P, Power ratio (dB)
! 10lgl =0
100 101g 100 = 420 (power gain)
I
0 101g 0 = —10 (power loss or attenuation)

[f logarithms to base e (i.e., natural or Napierian logarithms) are used,
then the ratio of two powers is said to be in nepers (Np), i.e.,
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& o 1. P
power ratio in nepers = —In — (41.5)
2 Py

Thus when the power ratio P»/P; =5, the power ratio in nepers =
=In5 = 0.805 Np, and when the power ratio P,/P; = 0.1, the power
ratio in nepers = sIn0.1 = —1.15 Np.

The attenuation of filter sections and along a transmission line are of an
exponential form and it is in such applications that the unit of the neper

1s used (see Chapters 42 and 44).
If the powers P; and P- refer to power developed in two equal resistors,

R, then P; = V3/R and P, = V3/R. Thus the ratio (from equation (41.4))
can be expressed, by the laws of logarithms, as

P V3/R V3
ratio in decibels = l«[]lg—2 = 101g E'i = 101g —=
P Vi/R Vi

Vo2
= iie { 22
g(vl)

Vv
ie. | ratio in decibels = 201g v_l (41.6)
1

Although this is really a power ratio, it 1s called the logarithmic voltage
ratio.
Alternatively, (from equation (41.5)),

4 1. P 1 VZ/R 1. Nt
ratio in nepers = 5 In— = =In = =5 In | —

P, 2 Vi/R Vi

V
1.e., ratio in nepers = In ?‘1' (41.7)
1

Similarly, if currents 7, and /- in two equal resistors R give powers P,
and P> then (from equation (41.4))

| IZR I 2
ratio in decibels = 101g = =10 lg [ 3= | = 101g (—1)
P, IR I

i
ie.. | ratio in decibels = 201g I_“ (41.8)
1

Alternatively (from equation (41.5)),

1 P 1 (LR : L (13)1
rato i nepers = — il — = —1in = = =11\ —
EE= 5 2 "\ P >
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I
1.e., ratio in nepers = In I_z (41.9)
1

In equations (41.4) to (41.9) the output-to-input ratio has been used.
However, the input-to-output ratio may also be used. For example,
in equation (41.6), the output-to-input voltage ratio 1s expressed as
201g(V,/V,) dB. Alternatively, the input-to-output voltage ratio may be
expressed as 201g(V,/V,) dB, the only difference in the values obtained
being a difference in sign.

If 201g(V,/V,;) = 10 dB, say, then 201g(V,/V1) = —10 dB. Thus if
an attenuator has a voltage input V; of 50 mV and a voltage output V,
of 5 mV, the voltage ratio V,/V 1s 5/50 or 1/10. Alternatively, this may
be expressed as ‘an attenuation of 10°, ie., V/V. = 10.

Problem 1. The ratio of output power to input power in a
system is

(a)2 (b) 25 (c) 1000 and (d) ﬁ
Determine the power ratio in each case (i) in decibels and (ii) in
nepers.

(1) From equation (41.4), power ratio in decibels = 101g(P> /P, ).

(a) When P2/P; =2, power ratio= 101g2 =3 dB
(b) When P2/P; = 25, power ratio = 101g25 =14 dB
(c) When P2/P; = 1000, power ratio = 101g 1000 = 30 dB

(d) When P,/P, = L=, power ratio = 101g .- = —20 dB

(1) From equation (41.5), power ratio in nepers = %ln[Pg [Py).
(a) When P,/P, =2, power ratio = 3In2 = 0.347 Np
(b) When P,/P; =25, power ratio = 3 In25 = 1.609 Np
(¢c) When P,/P, = 1000, power ratio = 31n1000 = 3.454 Np

(d) When P,/P; = -, power ratio = 1In = = —2.303 Np

L
100
The power ratios in (a), (b) and (c) represent power gains, since the
ratios are positive values; the power ratio in (d) represents a power loss
or attenuation, since the ratio is a negative value.

Problem 2. 5% of the power supplied to a cable appears at the
output terminals. Determine the attenuation in decibels.

[f P, = input power and P> = output power, then
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41.4 Symmetrical T-and
m-attenuators

From equation (41.4), power ratio in decibels
= 101g(P2/P1) = 101g0.05 = —13 dB.

Hence the attenuation (i.e., power loss) is 13 dB.

Problem 3. An amplifier has a gain of 15 dB. If the input power
1s 12 mW, determine the output power.

From equation (41.4), decibel power ratio = 101g(P2/P;). Hence
15 = 101g(P2/12), where P> is the output power in milliwatts.

from the definition of a logarithm. Thus the output power,

Py = 12(10)'° = 379.5 mW

Problem 4. The current output of an attenuator is 50 mA. If the
current ratio of the attenuator i1s —1.32 Np, determine (a) the current
input and (b) the current ratio expressed in decibels. Assume that
the input and load resistances of the attenuator are equal.

(a) From equation (41.9), current ratio in nepers = In(/5/1;). Hence
—1.32 = In(50/1,), where I, is the input current in mA.

132 90
e = —
I

50 .
from which, current input, I) = T ha 50¢'7? = 187.2 mA
El i )

(b) From equation (41.8),

i 3 : I 50
current ratio in decibels = 201g — = 201g [ —
I 187.2

= —11.47 dB

Further problems on logarithmic ratios may be found in Section 41.9,
problems 1 to 5, page 785.

(a) Symmetrical T-attenuator

As mentioned in Section 41.1, the ideal attenuator is made up of pure
resistances. A symmetrical T-pad attenuator is shown in Figure 41.5 with
a termination R, connected as shown. From equation (41.1),
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Ry =/ (R} + 2R:R:) (41.10)

and from equation (41.2) Ry =./(RocRsc) (41.11)

Part A Por B

Figure 41.5 Syvmmetrical

With resistance R, as the termination, the input resistance of the pad will
T-pad attenuator

also be equal to R;. If the terminating resistance R, is transferred to port
A then the input resistance looking into port B will again be Rj.

The pad is therefore symmetrical in impedance in both directions of
connection and may thus be inserted into a network whose impedance 1s
also Ry. The value of Ry 1s the characteristic impedance of the section.

As stated in Section 41.3, attenuation may be expressed as a voltage
ratio V/V> (see Figure 41.5) or quoted in decibels as 201g(V,/V1) or,
alternatively, as a power ratio as 101g(P,/P,). If a T-section is symmet-
rical, 1.e., the terminals of the section are matched to equal impedances,
then

P, Vi
10lg — =201g — =201

2 2

I
I

since Ry = Ryoap = Ryp. i.e.,
P Vi\?2 I
1 1 1
10le —=10le | — | = 101 —
o P £ ( z) : (h)
P Vi~ I1\?
from which P—' == (V_]) = (I_I)
2 2 2
)= -E)
or iz = =2 | =
\V \ P Vs I

Let N=V,/V;yor /I, or \,/(P;/P;), where N is the attenuation. In
Section 41.5, page 772, it is shown that, for a matched network, i.e., one
terminated in its characteristic impedance, NV is in fact the insertion loss
ratio. (Note that in an asymmetrical network, only the expression N =
+/(P1/P2) may be used —see Section 41.7 on the L-section attenuator)

2

From Figure 41.5,

current [, = —

vﬂ][ﬂgﬁ V=V, —IiRi =V, — (—) R

Voltage V2 = ( ) V by voltage division

R, + Ry
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. Ry R,
1.E., V= (— Vi (l - _)
Ry + Ry Ry

Pl =)
:Vl
R+ Ry Ry

Va Ry — Ry Vi Ro + Ry
Hence — = or —
Vi Ro + R Va Ry — Ry

(41.12)

From equation (41.12) and also equation (41.10), it is possible to derive
expressions for R; and R> in terms of N and Ry, thus enabling an atten-
uator to be designed to give a specified attenuation and to be matched
symmetrically into the network. From equation (41.12),

N(Ry— R,) =Ry + R,

NRy — NR, = Ry + R,
NRy — Ry = R, + NR,
Ro(N — 1) =Ri(1+N)

(N —1]

from which| R; =

From equation (41.10), Ry = ,,F.f'.:ﬂ% +2R\R,) ie., K2 = R2 + 2R, R>,
R — R}
2R,

Substituting for R; from equation (41.13) gives

from which, R> =

R2 — [Ry(N — 1)/(N + D
2[Ro(N — 1) /(N + 1)]

_ [RG(N+ 1) —Rj(N — 1)’/ (N + 1)
N 2Ro(N —1)/(N 4+ 1)

R=RWN+HL%N—HH

R, =

L 2 T RN — DN + 1)
3 Ro[(N24+2N 4+ 1) — (N2—2N 4+ 1)]
2(N2 —1)
_ Ry(4N)
2(N2—-1)
Hence R, =R, (N?'_r 1) (41.14)

Thus if the characteristic impedance R and the attenuation N (= V{/V>»)
are known for a symmetrical T-network then values of R; and R» may be
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s ) calculated. Figure 41.6 shows a T-pad attenuator having input and output
impedances of Ry with resistances R; and R» expressed in terms of Ry
and N.

(b) Symmetrical w-attenuator

Figure 41.6 A symmetrical m-attenuator is shown in Figure 41.7 terminated in Ry.
From equation (41.3),

Al characteristic impedance | Ry = RiR; (41.15)
Az | Va Hy e T R + 2R; .
Figure 41.7 Symmetrical and from equation (41.2), | Ry =/(Roc Rsc) (41.16)

T-atienuator

Vv I
Given the attenuation factor N = bt (: I_l)
2 2

and the characteristic impedance Ry, it is possible to derive expressions
for Ry and R», in a similar way to the T-pad attenuator, to enable a
m-attenuator to be effectively designed.

Since N = V,/V, then V, = V| /N. From Figure 41.7,
current [y =14+ Iy and current Ig = I~ + I5. Thus

current [ = i =Ias+1c+1Ip

since V> =V, /N, ie.,

Vi v('+l+l)
R~ ARy " NRs. ' NRy

Hence == — +
R

(N +1)
Th R, = Ry —— 41.17
us 2 “(N D ( )
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From Figure 41.7, current Iy = I4 + I, and since the p.d. across R; is
[Vl _ Vl]!

Vi_Vi Vi—Vs

Ry R, R,
Vi Vi Vi Va
— —_ =z
Ro R» R R
Vi Vi Vi Vi
— + — since V2=V /N
Ry R R I

1 1 1 1
X _
Ro R R NR;

1 1 1(1 1)
R, R, R, N

l (N —1) 1 /N-—1

R{} Ry(N + I]

all

% (- w1) = w

l({N+l]—{N—l]) I(N |
(

from equation (41.17),

I

=

N-—-1

2

2

\

/

\

R, (N+1) J
1 1 /N —1)
RQ(N+1) N J

oL S (NNI (NH)

N*=1
Hence | Ry = R, ( ) (41.18)

Figure 41.8 shows a m-attenuator having iput and output impedances of
Ry with resistances R, and R» expressed in terms of R, and N.

2
)
2N

Figure 41.8
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Figure 41.9

Figure 41.10

There 1s no difference in the functions of the T- and m-attenuator pads
and either may be used in a particular situation.

Problem 5. Determine the characteristic impedance of each of the
attenuator sections shown in Figure 41.9.

From equation (41.10), for a T-section attenuator the characteristic
impedance,

{ 5
Ro = y/(R{ + 2RiR>).

(@) Ro= /(8 +(2)(8)(21)) = /400 =20 Q

(b) Ry = +/(102 4+ (2)(10)(15)) = +/400 =20 Q

(€) Ro = +/(200% + (2)(200)(56.25)) = /62500 = 250 Q

It is seen that the characteristic impedance of parts (a) and (b) is the same.

In fact, there are numerous combinations of resistances R; and R, which
would give the same value for the characteristic impedance.

Problem 6. A symmetrical m-attenuator pad has a series arm of
500 €2 resistance and each shunt arm of 1 k€2 resistance. Determine
(a) the characteristic impedance, and (b) the attenuation (in dB)
produced by the pad.

The m-attenuator section is shown in Figure 41.10 terminated in its char-
acteristic impedance, Ry.

(a) From equation (41.15), for a symmetrical w-attenuator section,

haracteristic imped R RiR,
characternsac im ance, — _—
R } R, + 2R,

Hence Ry = VI = 447 Q

(500)(1000)°
500 + 2(1000)

(b) Attenuation = 201g(/,/I-») dB. From Figure 41.10,

KA
> -
R, + R + (Rzﬂnf{ﬂz-l—ﬂﬂ]]) ¢1)

by current division

current [y = (

1000
ie., - I
= . (l{lt’]ﬂ+SG{H—{{IU{}D]{M?U[IUGU—|—44T]|])]
— 0.5531,

R>
and current I>» = (

)I—( sl )I-—l’]ﬁ'}lf
Ro+Ry/ © \10004447) %X~ "X
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Hence 1> = 0.691(0.5537,) = 0.382I, and I,/ = 1/0.382
= 2.617. Thus
attenuation = 201g2.617 = 8.36 dB

(Alternatively, since I,/I> = N. then the formula
N+ l)

R =R
2 U(N_l

may be transposed for N, from which attenuation = 201lg N .)

Problem 7. For each of the attenuator networks shown in
Figure 41.11, determine (a) the input resistance when the output
port is open-circuited, (b) the input resistance when the output port
1s short-circuited, and (c) the characteristic impedance.

(1) For the T-network shown in Figure 41.11(1):

15 Q 15 O
O T —o (a) Roc=15+10=25Q
(b) R -15+lﬂx!5—15+ﬁ-—21n
10 e T B
l (¢c) From equation (41.11), Ry = /(RocRsc) = /[(25)(21)]
| o 0 =2290Q
nput Cutput
port port (Alternatively, from equation (41.10),
M Bo— \/"'(Rf 4 2R\Ry) = /(152 + (2)(15)(10)) = 22.9 Q)
15 €
o T 2L (11) For the m-network shown in Figure 41.11(11):
l @ R _5}{{15+5]_1{}U_
50 &5 =S+ 0545 25
331> 15
5 1 l o ®) Re=5715="
|
;,:E,'{j t ggﬁ’“t (c) From equation (41.16),
(it Ry = +/(RocRsc) as for a T-network
Figure 41.11 = J1(4)(3.75)] =J/15=387Q

(Alternatively, from equation (41.15),

l{ R\R3 15(5)
o=y (M) - \/ (15 +2(5)) =488

Problem 8. Design a T-section symmetrical attenuator pad to
provide a voltage attenuation of 20 dB and having a characteristic
impedance of 600 £2.
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Voltage attenuation in decibels = 201g(V,/V>).
Attenuation, N = V/V>, hence 20 = 201g N, from which N = 10.
Charactenstic impedance, R; = 600 2
From equation (41.13),
Roy(N —1) 600(10 — 1)

resistance R, = = =491 Q
(N +1) (10 + 1)

481 (0 491 02

I " From equation (41.14),

2N 2)(10
resistanceR;:Rﬂ( - ):ﬁ{}{)({],{ ])=121£1
N-—1 10- — 1

Ay = 60D 0

o Thus the T-section attenuator shown in Figure 41.12 has a voltage atten-

Figure 41.12 uation of 20 dB and a characteristic impedance of 600 €.
(Check: From equation (41.10)),

Ry = xfm% + 2R.R>) = /[4912 + 2(491)(121)] = 600 Q)

Problem 9. Design a mw-section symmetrical attenuator pad to
provide a voltage attenuation of 200 dB and having a characteristic
impedance of 600 £2.

From problem 8, N = 10 and R; = 600
From equation (41.18),

resistance Ry = R N1 = 600 10° 1
wEERER TN ) T 2)(10)

= 2970 Q or 2.97 kQ

From equation (41.17),

N 1 1041
R3=Rn(;)=ﬁﬂ{}( 5 ):733:1
N-—-1 10— 1

Thus the m-section attenuator shown in Figure 41.13 has a voltage atten-
uation of 20 dB and a characteristic impedance of 600 €.

2.97 kL)

733 02 733 0

— =
Ay = 600 Q R, = 600 Q

. l l :

Figure 41.13
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(Check: From equation (41.15),
'{ R.R2 2970)(733)2
Ry=, | —2—)= G — 600 Q)
\ \ R + 2R 2970 + (2)(733)

Further problems on symmetrical T- and mw-attenuators may be found in
Section 41.9, problems 6 to 15, page 783.

41.5 Insertion loss Figure 41.14(a) shows a generator E connected directly to a load Z;. Let
the current flowing be I; and the p.d. across the load V. z is the internal
impedance of the source.

'S Figure 41.14(b) shows a two-port network connected between the

EI ! generator E and load Z;.

The current through the load, shown as I,, and the p.d. across the

% &1 load, shown as V,, will generally be less than current /; and voltage V,

z of Figure 41.14(a), as a result of the insertion of the two-port network

between generator and load.

The insertion loss ratio, A;, 1s defined as

Lo

(a}

ly A voltage across load when connected directly to the generator
~ voltage across load when the two-port network is connected
I'wo-por v, - LE., AL — VLJ".VI == IL!"II [411":}]
network ;
since Vy =1I1;Z; and V> = I,Z;. Since both V; and V, refer to p.d.’s
across the same impedance Zj;, the insertion loss ratio may also be
(b) expressed (from Section 41.3) as
Figure 41.14 v [
insertion loss ratio—= zmg(f) dB or 201g (I—-'*) dB | (41.20)
2 2

When the two-port network is terminated in its characteristic impedance
Zy the network 1s said to be matched. In such circumstances the input
impedance 1s also Zjg, thus the insertion loss 1s simply the ratio of input
to output voltage (i.e., V;/V3). Thus, for a network terminated in its
characteristic impedance,

v I
insertion loss = 20 Ig(v—l)dﬂ or 20 ]g(f—l){lﬂ 41.21)
2 2

! Ay 200 1 A, = 30010

Problem 10. The attenuator shown in Figure 41.15 feeds a
matched load. Determine (a) the charactenistic impedance Ry, and
(b) the mnsertion loss 1n decibels.

Figure 41.15
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Figure 41.16

-

AQ

500 Q

o

Figure 41.17

2 kQ2

(a) From equation (41.10), the characteristic impedance of a symmetric
T-pad attenuator is given by

Ro = \/ (R} + 2RiRy) = /[300° + 2(300)(450)] = 600 .

(b) Since the T-network i1s terminated in its characteristic impedance,
then from equation (41.21),

msertion loss = 201g(V,/V,) dB or 201g(l,/1,) dB.

By current division in Figure 41.15,

R>
f2=( ){fll
B4+ R+ Ry

Hence
I I
insertion loss = 20 1¢g — =20 lg ( : )
I, (R2/(Ra + Ry + Ry))I,
R>» + R R
=2{}lg( i ﬂj
R;
450
oS ( + 300 + ﬁ{}[])
= 450

=201g3 =9.54 dB

Problem 11. A 0-3 k€ rheostat 1s connected across the output of

a signal generator of internal resistance 500 €. If a load of 2 kQ
1s connected across the rheostat, determine the insertion loss at a
tapping of (a) 2 k€2, (b) 1 k€.

The circuit diagram is shown in Figure 41.16. Without the rheostat in
the circuit the voltage across the 2 k€2 load, V; (see Figure 41.17), is
given by

v-( 2000 )E-[ISE
L= \2000+500/) "

(a) With the 2 k€2 tapping, the network of Figure 41.16 may be redrawn
as shown in Figure 41.18, which in turn is simplified as shown in
Figure 41.19. From Figure 41.19,

1000
1000 + 1000 + 500

voltage V2 = ( ) E=04E

Hence, from equation (41.19), insertion loss ratio,

V.  08E
V, 04E

A =
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or, from equation (41.20),

el(D 1kQ insertion loss = 201g(V, /V,) = 201g2 = 6.02 dB
_— 1 (b) With the 1 k€ tapping, voltage V> 1s given by
240 e | |RAR G (1000 x 2000)/(1000 + 2000)
T ({{IUH{J x 2000)/(1000 + 2000)) + 2000 + 5:]{1)
. 666.7
Figure 41.18 = ( j E=10.211 B
666.7 + 2000 + 500
Hence, from equation (41.19),
k(2 Vv 0.8E
= l 1 insertion loss ratio A, = — = =379
V, 0.211E
500 02 or, from equation (41.20),
V
msertion loss in decibels = 201g (—L) =201g3.79
Figure 41.19 =11.57 dB

(Note that the insertion loss 1s not doubled by halving the tapping.)

Problem 12. A symmetrical w-attenuator pad has a series arm of
resistance 1000 € and shunt arms each of 500 €2. Determine (a) its
characteristic impedance, and (b) the insertion loss (in decibels)
when feeding a matched load.

The m-attenuator pad 1s shown in Figure 41.20, terminated in its charac-
teristic impedance, Ry.

! Iy A, =1000 O I,
Vi R, = 5000 R, = 500 O v, R,

Figure 41.20

(a) From equation (41.15), the characteristic impedance of a symmet-
rical attenuator is given by

l{ R\R3 (1000)(500)2
Ro = V (R] —|—2R3) = \/ (H}{]{] + 1{51:]':])) =rd
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41.6 Asymmetrical T-

and mw-sections

Port A  Port B
{b)

Figure 41.21 (a) Asymmetrical
T-pad section, (b) Asymmetrical
T-5ection

(b) Since the attenuator network i1s feeding a matched load, from equa-
tion (41.21),

V I
insertion loss = 20 Ig (v_]) dB =20 g (I—') dB
From Figure 41.20, by current division,

= }{f )
Ry 4Ry + (RaRy/(Ry+Ry) | '

current [y = {

R
and current I, = (—') I'y
R> + Ry

Fel L
“ \R2+Ro/ \Rs +R, + (RaRo/(R: + Ro)) /)

1.e..

I — ( 500 ) ( 500 ) I
== k500 + 354 500 4+ 1000 + ((500)(354)/(500 + 354)) ]
= (0.5855)(0.2929)1, = 0.1715/,

Hence I,/I, = 1/0.1715 = 5.83

Thus the insertion loss in decibels = 201g(/,/1-)
= 201g5.83 =153 dB

Further problems on insertion loss may be found in Section 41.9, prob-

lems 16 to 18, page 786.

Figure 41.21(a) shows an asymmetrical T-pad section where resistance

Ri # R;. Figure 41.21(b) shows an asymmetrical m-section where
R> # R;.
When viewed from port A, in each of the sections, the output

impedance 1s Rgg; when viewed from port B, the input impedance is
Roa. Since the sections are asymmetrical Ros does not have the same
value as Rpp.

Iterative impedance is the term used for the impedance measured at
one port of a two-port network when the other port i1s terminated with
an impedance of the same value. For example, the impedance looking
into port 1 of Figure 41.22(a) is, say, 500 € when port 2 is terminated
in 500 2 and the impedance looking into port 2 of Figure 41.22(b) is,
say, 600 €2 when port 1 is terminated in 600 £2. (In symmetric T- and
m-sections the two iterative impedances are equal, this value being the
characteristic impedance of the section.)

An image impedance is defined as the impedance which, when
connected to the terminals of a network, equals the impedance presented
to it at the opposite terminals. For example, the impedance looking into
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port 1 of Figure 41.23(a) 1s, say, 400 £ when port 2 is terminated in, say
750 €2, and the impedance seen looking into port 2 (Figure 41.23(b)) 1s
750 €2 when port 1 is terminated in 400 €2. An asymmetrical network 1s
— 500 O correctly terminated when it 1s terminated in its image impedance. (If the
500 Q : : : SE-ab
image impedances are equal, the value is the characteristic impedance.)
" " The following worked problems show how the iterative and image
Port 1 Port 2 impedances are determined for asymmetrical T- and w-sections.

{a)

Problem 13. An asymmetrical T-section attenuator is shown in
Figure 41.24. Determine for the section (a) the image impedances,
and (b) the iterative impedances.

o
0

600 €2 -—
600 (2

(a) The image impedance Rgx seen at port 1 in Figure 41.24 is given by
equation (41.11): Rps = +/(Rgc)(Rsc), where Roc and Rgc refer to
port 2 being respectively open-circuited and short-circuited.

L
o

(b}

Roc = 200 4 100 = 300
Figure 41.22 G

(100)(300)
d R¢r = 200 =275 Q
= S T 700+ 300
N - Hence Roa = +/[(300)(275)] = 287.2
4000 750 (2 Slmliﬂ[l}", Rop = \J’{Rﬂf_‘]{ﬂ_gf], where Ry and Rq- refer to port 1
being respectively open-circuited and short-circuited.
Port 1 Port 2 Roc = 300 + 100 = 400 ©
(a) (200)(100)
d Rgr = 300 = 366.7 Q2
o e T 200+ 100
i e
Hence Rgp = +/[(400)(366.7)] = 383 Q.
400 £ 750 O Thus the image impedances are 287.2 Q and 383 Q and are
shown in the circuit of Figure 41.25.
= © (Checking:
Port 1 Port 2
100)(300 4 383)
(b) Roa =200 + = 2872 Q
oA 700 + 300 + 383
Figlll"ﬂ 41.23 1001(200 <+ 287.2
and Rgp = 300 + COUIEN - 2B 2) — 383 Q)
100 + 200 + 287.2
200 O 300 O (b) The iterative impedance at port 1 in Figure 41.26, is shown as R;.
Hence
(100)(300 + R;) 30000 + 100R,
R, = 200 = 200
: * 100 + 300 + R, * 400 + R,

from which 400R; 4+ R} = 80000 + 200R,; 4 30000 + 100R,
Figure 41.24 and R} 4+ 100R; — 110000 = 0
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200 0 Solving by the quadratic formula gives

28r.2 L)

—100 £ /[1002 — (4)(1)(—110000)]
2

383 () RI —

—— —

Ao

e

Port 1

—100 £ 670.8
2

= 2854 Q

Figure 41.25 : :
. (neglecting the negative value).

The iterative impedance at port 2 in Figure 41.27 is shown as R-.

=Lt =L Hence
100)(200 + R> 20000 + 100R;
Ry =300+ [IHUEZIJ{]+R_; =300+ 3:]1:]1&3 ]
s 5 from which 300R> + R3 = 90000 + 300R> + 20000 + 100R>
Figure 41.26 and R3 — 100R> — 110000 = 0
o o —_ By 100 £ +/[(—100)2 — (4)(1)(—110000)]

2
100+ 670.8
B 2

=3854 Q

Thus the iterative impedances of the section shown in
Figure 41.24 are 2854 Q and 3854 Q.

Figure 41.27

Problem 14. An asymmetrical m-section attenuator is shown in
Figure 41.28. Determine for the section (a) the image impedances,

3 kil and (b) the iterative impedances.

(a) The image resistance R4 seen at port 1 1s given by

Roa = v/ (Roc)(Rsc),

Figure 41.28 where the impedance at port 1 with port 2 open-circuited,
(1000)(5000)
€™ 11000 + 5000

and the impedance at port 1, with port 2 short-circuited,

oo _ (1000)3000)
€= 77000 + 3000

Hence Roa = /[(833)(750) = 790 Q.

Similarly, Rog = +/(Roc )(Rsc), where the impedance at port 2 with
port 1 open-circuited,
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(2000)(4000)
2000 + 4000

and the impedance at port 2 with port 1 short-circuited,

~(2000)(3000)
~ 2000 + 3000

Hence Ros = +/[(1333)(1200)] = 1265
Thus the image impedances are 790 Q and 1265 Q.

(b) The iterative impedance at port 1 in Figure 41.29 is shown as R;.
From circuit theory,

— | [1xe 2 ki) A, e 1000[3000 + (2000R; /(2000 + R1))]
' ™ 1000 + 3000 + (2000R, /(2000 + R,))

Fad] e = g 3 x 108 4 (2 x 10°R, /(2000 + R,))
Figure 41.29 S T 74000 + (2000R, /(2000 + Ry))

2000R>

oc = = 1333 Q

= 1200 @

Rsc

3 k2

e

4000R, +

8 x 10°R; + 4000R? + 2000R? = 6 x 10° + 3 x 10°R;
+ 2 x 10°R,
6000RT 4+ 3 x 10°R; — 6 x 10° =0
2R; + 1000R; —2 x 10° =0
Using the quadratic formula gives

—1000 = +/[(1000)% — (4)(2)(=2 x 109)]
4

—1000 £ 4123

(neglecting the negative value).

3 k1l

o The iterative impedance at port 2 in Figure 41.30 is shown as R-.
- - 2000[3000 + (1000R, /(1000 + R-))]
A, 7 2000 + 3000 + (1000R,/(1000 + R»))

_ 6x 10° + (2 x 10°R2/(1000 + R»))
~ 5000+ (1000R2 /(1000 + R»))

[}

Port 2

Figure 41.30
Hence

S000R» + +- =6x 10°+

5 x 10°R> + 5000R3 + 1000R? = 6 x 10° + 6 x 10°R,
+ 2 x 10°R,
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41.7 The L-section

attenuator
HI
—— T o
— H lf—
Roa C Roa
Port 1 Port 2

Figure 41.31 L-section
attenuator pad

6000R; — 3 x 10°R; — 6 x 10° =0
2R; — 1000R; — 2 x 10° =0
from which

1000 £ +/[(—1000)2 — (4)(2)(=2 x 10%)]
4

1000 £ 4123
= 1281 Q

Thus the iterative impedances of the section shown in
Figure 41.28 are 781 Q and 1281 Q.

Further problems on asymmetrical T—and m-sections may be found in
Section 41.9, problems 19 to 21, page 787.

A typical L-section attenuator pad i1s shown in Figure 41.31. Such a pad
1s used for matching purposes only, the design being such that the atten-

unation introduced 1s a minimum. In order to derive values for R; and R-,
consider the resistances seen from either end of the section.

Looking in at port 1,

R>Rop
Rﬂ.ﬂ — RI _|_ e o e
R+ + Rop
from which
RoaR> + RpaRop = Ri1R2 + RiRog + RaRop (41.22)
Looking in at port 2,
R2(Ry + Roa)
Rop =
Ri1 4+ Roa + Rz
from which
RogRi + RoaRos + RogR> = Ri1R> + RaRoa (41.23)
Adding equations (41.22) and (41.23) gives
RoaR> 4+ 2RpaRop + RogRy 4+ RopR> = 2R 1R> 4+ R\ Rpp
+ R2Rpp + RaRpy
i.e., 2RpaRgp = 2RiR>
RasR
and By= “; vF (41.24)
2
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Substituting this expression for R; into equation (41.22) gives

RoaRp RoaR
0A ﬂB)Rg—F( oaRop

4

RopaR> + RpaRop = ( ) Rog + R2Rpp

2

.
RﬂHRﬂﬁ

1.e., RpaR: 4+ RoaRog = RoaRop + + RaRop

2

RoaRy,
Ry

2

Ri[Rr}A — Rog) = RoaR

from which R>(Rga — Rog) =

2
and resistance, | R, =,/ RoaRop (41.25)
\ \ Ros — Ros

Thus, from equation (41.24),

- RosRop _ RopaRog
//(RoaR2,/(Roa — Rog))  Rosv/(Roa/(Rox = Ro))

R,

Roa

7Ro V(Ros — Rog)
A

Hence resistance, | Ry =+/[Rps(Ros — Rog)] (41.26)

Figure 41.32 shows an L-section attenuator pad with its resistances
expressed in terms of the input and output resistances, Rp4 and Rog.

"".ll [HUA {.HUA = HUS :I]
—— T O
Rga Fog
Roa 20 Rog
Roa—Fos

F
Tt

Figure 41.32

Problem 15. A generator having an internal resistance of 500 Q
1s connected to a 100 2 load via an impedance-matching resis-
tance pad as shown in Figure 41.33. Determine (a) the values of
resistance R; and R,, (b) the attenuation of the pad in decibels, and
(c) 1ts msertion loss.

Scanned with CamScanner



Attenuators T81

(a) From equation (41.26), R; = /[500(500 — 100)] = 447.2 Q

;‘ (500)(100)>
| 500 — 100

From equation (41.25), R; = ) =111.8 Q

100 €2
(b) From section 41.3, the attenuation 1s given by 101g(P,;/P>) dB. Note

that, for an asymmetrical section such as that shown in Figure 41.33,

the expression 20 lg(V,/V1) or 20 lg(/,/I,) may not be used for

attenuation since the terminals of the pad are not matched to equal
impedances. In Figure 41.34,

Figure 41.33

’ R, = 4472 00 ! E
- : tl, =
T e L = 500 + 4472 + (111.8 x 100/(111.8 + 100))
E
¥, Fig.” Vy [:|'msz =_E
2o 111.8 &2 I{]ﬂ{]
and current
) I_( 111:4 )I_(III.SJ(E)_ E
Figure 41.34 TN +100/ ' \211.8) \1000/) T 18945
Thus input power,
P —fl{ﬁﬂm-( £ )2(5{]{])
' ~ \ 1000
and output power,
2
P, = I3(100) = 100
2 = 12(100) (1394‘5) L)
Hence
P E/(1000)]%(500
attﬂnuaticrn=l{]1g—]= 101g L7 ”f }
5 [E/(1894.5]2(100)

1894.54 2
=1{]1g{( ”m) [5]}dE

l.e.. attenuation = 12.54 dB

I (c) Insertion loss Ay is defined as
' .
T voltage across load when connected directly to the generator
R C) voltage across load when the two-port network is connected
v 100 Q2 Figure 41.35 shows the generator connected directly to the load.
500 €2 E E
Load current, I; =

500 + 100 _ 600

L A T—

E E
d vol Ve =L(100) = —(100) = —
and voltage, vV £ (100) 5{]{}{ )

Figure 41.35 6
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From Figure 41.34 voltage, V, = E — I,(500) = E — (E£/1000)500 from

part (b)
1.e., Vi=05E
E
1 Vo=V, —I1Ri=05E—- | — | (447.2) =0.0528 E

voltage, V> , — IR, (lﬂl’]ﬂ){ )

: : V;: E/6

rtion loss, A; = = — 3.157
insertion loss, A; v, = 0.0528E

Vv
In decibels, the insertion loss = 201g V_L

=201g3.157 =999 dB

Further problems on L-section attenuators may be found in Section 41.9,
problems 22 and 23, page 787.

41.8 Two-port networks Often two-port networks are connected in cascade, i.e., the output from
in cascade the first network becomes the input to the second network, and so on,

as shown in Figure 41.36. Thus an attenuator may consist of several

cascaded sections so as to achieve a particular desired overall performance.

3 T —[\I— ————— EI-—
Vi 1 Vv, 2 Vy I::' t Va—1 n—1
\ i
) 1 [ —

Figure 41.36 Two-port networks connected in cascade

If the cascade i1s arranged so that the impedance measured at one port
and the impedance with which the other port is terminated have the same
value, then each section (assuming they are symmetrical) will have the
same characteristic impedance Z; and the last network will be terminated
in Zy. Thus each network will have a matched termunation and hence
the attenuation in decibels of section 1 in Figure 41.36 1s given by a; =
201g(V/V2). Similarly, the attenuation of section 2 i1s given by a2 =
201g(V2/V3), and so on.

The overall attenuation is given by

v
a=20—1

rt

V| 1"2 1"3 vﬂ—]
=201g % X TR
V'.I VE V-_]. V"

Vv Vs
=Eﬂ]gv—]+2{]lgv—'—l—r~+2{]lg

2 3 "
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by the laws of logarithms, i.e.,
overall attenuation, a = a; +a>+ -+ -+ a,_ (41.27)

Thus the overall attenuation is the sum of the attenuations (in decibels)
of the matched sections.

Problem 16. Five identical attenuator sections are connected in
cascade. The overall attenuation i1s 70 dB and the voltage input to
the first section 15 20 mV. Determine (a) the attenuation of each
individual attenuation section, (b) the voltage output of the final
stage, and (c) the voltage output of the third stage.

(a) From equation (41.27), the overall attenuation is equal to the sum
of the attenuations of the mdividual sections and, since in this case
each section is identical, the attenuation of each section = 70/5 =
14 dB.

(b) If V; = the input voltage to the first stage and V = the output of
the final stage, then the overall attenuation = 201g(V,/Vy), 1e.,

20
70 =201g (U_) where Vy 1s in millivolts
0
20
3iS=l1g| —
k (Vﬂ)
1055 = 2
Vo
from which
20 -
output voltage of final stage, V, = 1035 = 6.32 x 107" mV
=632 pV

(¢) The overall attenuation of three identical stages is 3 x 14 = 42 dB.
Hence 42 = 201g(V,/V3), where V5 is the voltage output of the
third stage. Thus

42 20 20
a2 qeu o 2
20 ° ( Vs ) v

-
i |

from which the voltage output of the third stage, V; = 20/10*! =
0.159 mV
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Problem 17. A d.c. generator has an internal resistance of 450 Q
and supplies a 450 Q load.

(a) Design a T-network attenuator pad having a characteristic
impedance of 450 € which, when connected between the
generator and the load, will reduce the load current to % of its
initial value.

(b) If two such networks as designed in (a) were connected in
series between the generator and the load, determine the frac-
tion of the mmtial current that would now flow 1n the load.

(c) Determine the attenuation in decibels given by four such
sections as designed in (a).

The T-network attenuator is shown in Figure 41.37 connected between

the
net

generator and the load. Since it 1s matching equal impedances, the
work 1s symmetrical.

IC

Generator

450 L)
load
450 (2}

Figure 41.37

(a)

(b)

Since the load current is to be reduced to 35 of its initial value, the

attenuation N = 8. From equation (41.13),

Ry(N — 1 8—1
resistance, R; = o ) = 45{.1'{—]| = 350 Q
N+1) 8+ 1)

and from equation (41.14),

2
resistance, R» = R, (N-_NI) = 450 ( £ 31) =114 Q

2 2

When two such networks are connected in series, as shown in
Figure 41.38, current /; flows into the first stage and %I  Hows
out of the first stage into the second.

Again, = of this current flows out of the second stage, i.e.,
—r 3 [ ==
* x 21y, ie., = of I) flows into the load.

Thus ﬁ of the original current flows in the load.
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I"'"‘"""’mn-r-—-. -

/. ' 350 © 350 )

450 £}

(o]

e S NS

Figure 41.38

(¢c) The attenuation of a single stage i1s 8. Expressed in decibels,
the attenuation is 201g(/y/I5) = 201g8 = 18.06 dB. From equa-
tion (41.27), the overall attenuation of four 1dentical stages is given
by 18.06 4+ 18.06 + 18.06 + 18.06, 1.e., 72.24 dB.

Further problems on cascading two-port networks may be found in
Section 41.9 following, problems 24 to 26, page 787.

41.9 Further problems Logarithmic ratios

on attenuators
1 The ratio of two powers is (a) 3, (b) 10, (c) 30, (d) 10000. Determine

100 100 the decibel power ratio for each.
[(a) 4.77 dB (b) 10 dB (c) 14.8 dB (d) 40 dB]

1

2 The ratio of two powers is (a) 5, (b) 3, (¢) 55, (d) . Determine

30 £ ‘ _ v
the decibel power ratio for each.
l [(a) —10dB (b) —3 dB (c) —16 dB (d) —30 dB]
O o
@ 3 An amplifier has (a) a gain of 25 dB, (b) an attenuation of 25 dB. If
100 O 1000 the input power 1s 12 mW, determine the output power in each case.

[(a) 3795 mW (b) 37.9 uW]

4 7.5% of the power supplied to a cable appears at the output terminals.
Determine the attenuation in decibels. [11.25 dB]

5 The current input of a system is 250 mA. If the current ratio of the
system 1s (1) 15 dB, (1) —8 dB, determine (a) the current output and
(b) the current ratio expressed in nepers.

L A [(i) (2) 1.406 A (b) 1.727 Np
(i) (a) 99.53 mA (b) — 0.921 Np]
400 02
Symmetrical T —and w-attenuators
© (©) — 6 Determine the characteristic impedances of the T-network attenuator
sections shown in Figure 41.39.
Figure 41.39 [(a) 26.46 © (b) 244.9 Q (¢) 1.342 kQ]
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At the end of this chapter you should be able to:

e appreciate the purpose of a filter network

e understand basic types of filter sections, i.e., low-pass,
high-pass, band-pass and band-stop filters

e understand characteristic impedance and attenuation of filter
sections

e understand low and high pass ladder networks

e design a low and high pass filter section

e calculate propagation coefficient and time delay in filter
sections

e understand and design ‘m-derived’ filter sections

e understand and design practical composite filters

42.1 Introduction A filter is a network designed to pass signals having frequencies within
certain bands (called passbands) with little attenuation, but greatly attenu-
ates signals within other bands (called attenuation bands or stopbands).

As explained in the previous chapter, an attenuator network pad is
composed of resistances only, the attenuation resulting being constant
and independant of frequency. However, a filter is frequency sensitive
and 1s thus composed of reactive elements. Since certain frequencies are
to be passed with minimal loss, 1deally the inductors and capacitors need
to be pure components since the presence of resistance results in some
attenuation at all frequencies.

Between the pass band of a filter, where ideally the attenuation is
zero, and the attenuation band, where ideally the attenuation is infinite, is
the cut-off frequency, this being the frequency at which the attenuation
changes from zero to some finite value.

A filter network containing no source of power is termed passive, and
one containing one or more power sources 1s known as an active filter
network.

The filters considered in this chapter are symmetrical unbalanced T and
m sections, the reactances used being considered as ideal.

Filters are used for a variety of purposes in nearly every type of elec-
tronic communications and control equipment. The bandwidths of filters
used in communications systems vary from a fraction of a hertz to many
megahertz, depending on the application.
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42.2 Basic types of filter
sections

]|

(a)

E: T

Figure 42.1

o

6

-

Altenuation

Fass band

i

{a)

Figure 42.2
0—4)—3—{|—*=
o o
(a)

O C

Figure 42.3

(a) Low-pass filters

Figure 42.1 shows simple unbalanced T and & section filters using series
inductors and shunt capacitors. If either section 1s connected into a
network and a continuously increasing frequency is applied, each would
have a frequency-attenuation characteristic as shown in Figure 42.2(a).
This 1s an ideal characteristic and assumes pure reactive elements. All
frequencies are seen to be passed from zero up to a certain value without
attenuation, this value being shown as f., the cut-off frequency; all
values of frequency above f. are attenuated. It is for this reason that
the networks shown in Figures 42.1(a) and (b) are known as low-pass
filters. The electrical circuit diagram symbol for a low-pass filter is shown
in Figure 42.2(b).

Summarizing, a low-pass filter is one designed to pass signals at
frequencies below a specified cut-off frequency.

When rectifiers are used to produce the d.c. supplies of electronic
systems, a large ripple introduces undesirable noise and may even mask
the effect of the signal voltage. Low-pass filters are added to smooth the
output voltage waveform, this being one of the most common applications
of filters in electrical circuits.

Filters are employed to isolate various sections of a complete system
and thus to prevent undesired interactions. For example, the insertion of
low-pass decoupling filters between each of several amplifier stages and
a common power supply reduces interaction due to the common power
supply impedance.

(b) High-pass filters

Figure 42.3 shows simple unbalanced T and 7 section filters using series
capacitors and shunt inductors. If either section is connected into a
network and a continuously increasing frequency is applied, each would
have a frequency-attenuation characteristic as shown in Figure 42.4(a).

Once again this 1s an ideal characteristic assuming pure reactive
elements. All frequencies below the cut-off frequency f,. are seen to
be attenuated and all frequencies above f. are passed without loss. It 1s
for this reason that the networks shown in Figures 42.3(a) and (b) are
known as high-pass filters. The electrical circuit-diagram symbol for a
high-pass filter is shown in Figure 42.4(b).

Summarizing, a high-pass filter 1s one designed to pass signals at
frequencies above a specified cut-off frequency.

The characteristics shown in Figures 42.2(a) and 42.4(a) are ideal in
that they have assumed that there is no attenuation at all in the pass-bands
and infinite attenuation in the attenuation bands. Both of these conditions
are 1impossible to achieve in practice. Due to resistance, mainly in the
inductive elements the attenuation in the pass-band will not be zero, and
in a practical filter section the attenuation in the attenuation band will
have a finite value. Practical characteristics for low-pass and high-pass
filters are discussed in Sections 42.5 and 42.6. In addition to the resistive
loss there is often an added loss due to mismatching. Ideally when a filter
1s inserted into a network it is matched to the impedance of that network.
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However the characteristic impedance of a filter section will vary with
frequency and the termination of the section may be an impedance that
does not vary with frequency in the same way. To minimize losses due
to resistance and mismatching, filters are used under image impedance
conditions as far as possible (see Chapter 41).

(c)

A band-pass filter 1s one designed to pass signals with frequencies between
two specified cut-off frequencies. The characteristic of an ideal band-pass
filter is shown in Figure 42.5.

Such a filter may be formed by cascading a high-pass and a low-pass
filter. f¢, 1s the cut-off frequency of the high-pass filter and f, is the
cut-off frequency of the low-pass filter. As can be seen, f¢, > fc, for
a band-pass filter, the pass-band being given by the difference between
these values. The electrical circuit diagram symbol for a band-pass filter
1s shown in Figure 42.6.

Crystal and ceramic devices are used extensively as band-pass filters.
They are common in the intermediate-frequency amplifiers of vhf radios
where a precisely-defined bandwidth must be maintained for good
performance.

Band-pass filters

(d) Band-stop filters

A band-stop filter 1s one designed to pass signals with all frequencies
except those between two specified cut-off frequencies. The characteristic
of an ideal band-stop filter is shown in Figure 42.7. Such a filter may be
formed by connecting a high-pass and a low-pass filter in parallel. As can
be seen, for a band-stop filter f¢, > fc,, the stop-band being given by
the difference between these values. The electrical circuit diagram symbol
for a band-stop filter is shown in Figure 42.8.

Sometimes, as in the case of interference from 50 Hz power lines in
an audio system, the exact frequency of a spurious noise signal 1s known.
Usually such interference is from an odd harmonic of 50 Hz, for example,
250 Hz. A sharply tuned band-stop filter, designed to attenuate the 250 Hz
noise signal, 1s used to minimize the effect of the output. A high-pass
filter with cut-off frequency greater than 250 Hz would also remove the
interference, but some of the lower frequency components of the audio
signal would be lost as well.

Nature of the input impedance

Let a symmetrical filter section be terminated in an impedance Z,. If
the input impedance also has a value of Z,, then Z is the characteristic
impedance of the section.

Figure 42.9 shows a T section composed of reactive elements X, and
Xpg. If the reactances are of opposite kind, then the input impedance of
the section, shown as Z,, when the output port is open or short-circuited
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o can be either inductive or capacitive depending on the frequency of the
—_— G input signal.
~ For example, if X, is inductive, say jX;, and Xy is capacitive, say,
— jX ¢, then from Figure 42.9,
Figure 42.8
i Zoc = jXL — jJX¢c = jXL — X¢)
; X W (—jX¢) : X X
) - - gl P S ‘_f,f L)( IXc) _ x4 1( 1X¢)
: l 4 == (JXp)+ (—jXc) J(XL —Xc)
. [ XiXe : X1 Xc
l XL — X.f XL — x;:
inpat owpst  Since X; =2xfL and X¢ = (1/21fC) then Zoc and Zsc can be
Part Forl

inductive, (i.e., positive reactance) or capacitive (1.e., negative reactance)
Figure 42.9 depending on the value of frequency, f.

Let the magnitude of the reactance on open-circuit be X and the
magnitude of the reactance on short-circuit be Xg-. Since the filter
elements are all purely reactive they may be expressed as jX ¢ or jXsc,
where Xgc and Xgc are real, being positive or negative in sign. Four
combinations of Z,- and Zge are possible, these being:

(1) Zoc = +jXpc and Zge = — jXs¢

() Zgc = —jXoc and Zgc = +jXsc

(m) Zge =+jXoc and Zge = +jXsc

and (iv) Zoc = —jXoc and Zsc = — jXsc¢

From general circuit theory, input impedance Z, is given by:
Zo =V (ZocZsc)

Taking either of combinations (1) and (1) above gives:

f :
L= V}(_Jlxt‘]r_’“x.’i’f] = JXocXsc),

which is real, thus the input impedance will be purely resistive.
Taking either of combinations (ii1) and (iv) above gives:

Zg = \/szﬂfxsr_‘] = +jv XocXsc),

which 1s imaginary, thus the input impedance will be purely reactive.

Thus since the magnitude and nature of Zo¢c and Zs¢c depend upon
frequency then so also will the magnitude and nature of the input
impedance Z, depend upon frequency.

Characteristic impedance

Figure 42.10 shows a low-pass T section terminated in its characteristic
impedance, Zg.
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Figure 42.10

From equation (41.2), page 760, the characteristic impedance 1s given

by Zo = V/(ZocZsc).
The following statements may be demonstrated to be true for any filter:

(a) The attenuation is zero throughout the frequency range for which the
characteristic impedance is purely resistive.

(b) The attenuation is finite throughout the frequency range for which
the characteristic impedance is purely reactive.

To demonstrate statement (a) above:

Let the filter shown in Figure 42.10 be operating over a range of frequen-
cies such that Zg 1s purely resistive.

Vv Vv
From Figure 42.10, Zy = — = —
L= K

Power dissipated in the output termination, P> = Vsl cos¢, = Vi,
(since ¢» = () with a purely resistive load).

Power delivered at the input terminals,

Py = Vil ycosg = Vil (since ¢ =0)
No power 1s absorbed by the filter elements since they are purely reactive.
Hence P,=P,,Vo=V,and I, =1,.

Thus 1if the filter 1s terminated in Z, and operating in a frequency range
such that Zg 1s purely resistive, then all the power delivered to the input
1s passed to the output and there is therefore no attenuation.

To demonstrate statement (b) above:

Let the filter be operating over a range of frequencies such that Zg 1s
purely reactive.

% v
Then, from Figure 42.10, T] = jZg = 1_
1 2
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Thus voltage and current are at 90° to each other which means that the
circuit can neither accept nor deliver any active power from the source
to the load (P = VIcos¢ = VIcos90° = VI(0) = 0). There 1s therefore
infinite attenuation, theoretically. (In practise, the attenuation 1s finite, for
the condition (V /1) = (V»/I5) can hold for V, < V, and I, < I, since
the voltage and current are 90° out of phase.)

Statements (a) and (b) above are important because they can be applied
to determine the cut-off frequency point of any filter section simply from
a knowledge of the nature of Z,. In the pass band, Z, is real, and in the
attenuation band, Z, is imaginary. The cut-off frequency is therefore at
the point on the frequency scale at which Zg changes from a real quantity
to an imaginary one, or vice versa (see Sections 42.5 and 42.6).

42.4 Ladder networks Low-pass networks

Figure 42.11 shows a low-pass network arranged as a ladder or repetitive
network. Such a network may be considered as a number of T or &
sections in cascade. In Figure 42.12(a), a T section may be taken from the
ladder by removing ABED, producing the low-pass filter section shown
in Figure 42.13(a). The ladder has been cut in the centre of each of
its inductive elements hence giving L/2 as the series arm elements in
Figure 42.13(a).

Figure 42.11

Similarly, a m section may be taken from the ladder shown in
Figure 42.12(a) by removing FGJH, producing the low-pass filter section

A D F H F H
Femmm=— = - = s meesssss=== s N i
i ' ! - 1 ]
Ll Ll ! !
L TiT ERE ;P L g 1 g s i Monoutlre ot sl
i ' - :
i : i :
L] ] E--'--E E--l--E
i, | | s — Em— — A 3. 3. mreieps2
g ] c ! C & C C i .’
i : i l
» ; L T . . ! = i ; o T
1 : | . i ;
] ] i . ] i
i : | ' Gr---------- 43
[ FE TR R E G T TEREE RS J
(a) (b)

Figure 42.12
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shown in Figure 42.13(b). The shunt element C in Figure 42.12(a) may
oYYV V¥V  be regarded as two capacitors in parallel, each of value C/2 as shown in

Ba| =
majr=

the part of the ladder redrawn in Figure 42.12(b). (Note that for parallel
capacitors, the total capacitance Cy 1s given by

; &
C-;-:C]—|—Cg—|—-~~.lnth1s:‘:aseE+?=E'j.

(@) The ladder network of Figure 42.11 can thus either be considered to be a
L number of the T networks shown in Figure 42.13(a) connected in cascade,
o—ep—"YY +—0 or a number of the w networks shown in Figure 42.13(b) connected in
cascade.
It 1s shown in Section 44.3, page 871, that an infinite transmission line
may be reduced to a repetitive low-pass filter network.

M|y

(b) High-pass networks

Figure 42.13 Figure 42.14 shows a high-pass network arranged as a ladder. As above,
the repetitive network may be considered as a number of T or m sections

in cascade.
| HAE

Figure 42.14

In Figure 42.15, a T section may be taken from the ladder by removing
ABED, producing the high-pass filter section shown in Figure 42.16(a).

Figure 42.15
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2C 2C

(a)

2L 2L

(b)
Figure 42.16

42.5 Low-pass filter

sections
L L
2 2
o T o Y, O
—= —_ C 2
D

Figure 42.17

Note that the series arm elements are each 2C. This is because two capac-
itors each of value 2C connected in series gives a total equivalent value
of C, (1.e., for series capacitors, the total capacitance Cr 1s given by
: l + l fenie)
Cr O O
Similarly, a  section may be taken from the ladder shown in Figure 42.15
by removing FGJH, producing the high-pass filter section shown in
Figure 42.16(b). The shunt element L in Figure 42.15(a) may be regarded
as two inductors in parallel, each of value 2L as shown in the part of the
ladder redrawn 1n Figure 42.15(b). (Note that for parallel inductance, the
total inductance Ly is given by
. : + . + In thi : ¥ . . )
— = — 4+ —+---. In this case, — + — = —.
Lr L, L, 2L 2L L
The ladder network of Figure 42.14 can thus be considered to be either
a number of T networks shown in Figure 42.16(a) connected in cascade,
or a number of the m networks shown in Figure 42.16(b) connected in
cascade.

(a) The cut-off frequency

From equation (41.1), the characteristic impedance Z; for a symmetrical
T network is given by: Z; = \/{Zi + 2Z,4Zg). Applying this to the low-
pass T section shown in Figure 42.17,

JwL 1
Za="—and Zp = ——
£ p B ecC
I'T 2 %9 .
| | Jw L* j{-:.lL) ( 1 )
Thus Z3= 42
V| ( 2 ) \oC
| (-2 L
L
Z |III L {ﬂle {4,} ]_)
1.€., — _—— 2.
=Y\e 4
L &?1?
Zy will be real if — > 2
L &L
Thus attenuation will commence when E = 2
| , 4
1.e., when 0, = — (42.2)
LC

where w, = 2 f. and f,. is the cut-off frequency.
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L]

h.'lln,

Figure 42.18

e

, 4
Thus 2nfe) = —

us  @2rfe)” = 7=

[r 4 2
Eﬂf{' — III (_) —
V\Lc JI(LC)
2 1

d P —
an fe= 22O =~ mILC)
1.e the cut-off frequency, | f, = :
e ORISR | Je = o)

(42.3)

The same equation for the cut-off frequency is obtained for the low-pass

m network shown in Figure 42.18 as follows:
From equation (41.3), for a symmetrical t network,

s _ (&%
ﬂ_\r'll Z,+ 27,

Applying this to Figure 42.18 Z, = joL and Z, = —— = ——

. 4 R
uwu( 1 )
Thus Zo= | }: ) —@7C”

()| A )
Gl T ) B T Kl ey

, AL ) (4L )
s 1 § jmfz — . wC? !
- 4 - 4
j(wL— —) 2 ol
\ L oc)) \\lac )

I
£
3
, .
| &
b
—
I
-::"______
?
4=
®
I
NN
e | =
ey
»
I
I

LE., Z[p =

i
\\Z 32
wC?
A

C
Zo will be real if E >

(42.4)
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: : = - =
Thus attenuation will commence when — =
L 4
. - 4
1.e., when o, = —
LC
1

from which, cut-off frequency, | f. as 1n equation (42.3)).

~ xJIC)

(b) Nominal impedance

When the frequency is very low, @ is small and the term (w’L?/4)
in equation (42.1) (or the term (@w?C?/4) in equation (42.4)) may be
neglected. The characteristic impedance then becomes equal to /(L/C),
which is purely resistive. This value of the characteristic impedance is
known as the design impedance or the nominal impedance of the section
and 1s often given the symbol Ry,

ic., | Ry— \/g (42.5)

Problem 1. Determine the cut-off frequency and the nominal
impedance of each of the low-pass filter sections shown in
Figure 42.19.

100 mH 100 mH (a) Comparing Figure 42.19(a) with the low-pass T section in
O——IVYVVYA o _/¥YVA—9p Figure 42.17 shows that (L/2) = 100 mH, i.e., inductance,
L =200 mH = 0.2 H and capacitance, C =02 yF=0.2x 107° F
—_— 02uF From equation (42.3), cut-off frequency,
I ! 10°
0 : 0 fe

C aJ(LC) /(02 x02x107%) 7(0.2)
ic. f.= 1592 Hz or 1.592 kHz

Sl . From equation (42.5), nominal impedance,
/L 0.2
— —— Rﬂ: IIII(E) — I|II(':}2 !ﬂ_ﬁ) =1'ﬂ‘ﬂﬂﬂﬂ1’1kﬂ
200 pF 200 pF \" \ £
o—e +—0 (b) Comparing Figure 42.19(b) with the low-pass m section shown
(b) in Figure 42.18 shows that (C/2) = 200 pF, i.e., capacitance,
C = 400 pF = 400 x 10~'* F and inductance, L = 0.4 H,
Figure 42.19 From equation (42.3), cut-off frequency,

| |

T S — = 25.16 kHz
m/(LC) /(0.4 x 400 x 10712)

fe
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From equation (42.5), nominal impedance,

By T Y = 31.62 kQ
*=\y\c) = \V\a0ox102

From equations (42.1) and (42.4) it i1s seen that the charactenstic
impedance Zp varies with w, i.e., Zg varies with frequency. Thus if
the nominal impedance is made to equal the load impedance into
which the filter feeds then the matching deteriorates as the frequency
increases from zero towards f.. It is however convention to make the
terminating impedance equal to the value of Z; well within the pass-
band, i.e., to take the limiting value of Z; as the frequency approaches
zero. This limit is obviously ./(L/C). This means that the filter is
properly terminated at very low frequency but as the cut-off frequency i1s
approached becomes increasingly mismatched. This is shown for a low-
pass section in Figure 42.20 by curve (a). It is seen that an increasing loss
is introduced into the pass band. Curve (b) shows the attenuation due to
the same low-pass section being correctly terminated at all frequencies. A
curve lying somewhere between curves (a) and (b) will usually result for
each section if several sections are cascaded and terminated in Ry, or if a
matching section is inserted between the low pass section and the load.

A
Attenuation

(a)
(b)

»
0 fe Frequency

«— FPass band —»ta— Attenuation R

band

Figure 42.20

(c) To determine values of L and C given R, and f,

If the values of the nominal impedance Ry and the cut-off frequency f.
are known for a low pass T or m section it is possible to determine the
values of inductance and capacitance required to form the section.

iI. /L

From equation (42.5), Ry = \/E = E from which, v/L = Ry+/C
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Substituting in equation (42.3) gives:

1 1 1

Je = 2ILJC =~ ZRoJOVC — TRoC
_ 2 1
from which, | capacitance C = (42.6)
I.R{Iff
i
Similarly from equation (42.5), +/C = :;—
0
s s ; 1 Ro
Substituting in equation (42.3) gives: f. = = —
JIL VL wlL
H e —
Ry
; . Ry
from which, | inductance, L = T (42.7)
T C

Problem 2. A filter section is to have a characteristic impedance at
zero frequency of 600 €2 and a cut-off frequency at 5 MHz. Design
(a) a low-pass T section filter, and (b) a low-pass 7 section filter
to meet these requirements.

19.1 pH 19.1 uH
The characteristic impedance at zero frequency is the nominal impedance
Ry. i.e., Ry = 600 ; cut-off frequency, f. =5 MHz = 5 x 10° Hz.
m—r— 106 pF From equation (42.6),
o ¢ 0 it C i ! F = 106 pF

capacitance, C = = =

{ 3 ZRofe  7(600)(5 x 10°) P

a)
and from equation (42.7),

38.2 uH Ro 600

o—ae—"Y VY +—0 inductance, L = = H = 38.2 uH

xfe (5 x 10°)

S— — (a) A low-pass T section filter is shown in Figure 42.21(a), where
53 pF 53 pF the series arm inductances are each L/2 (see Figure 42.17), i.e.,
(38.2/2) = 19.1 pH

o—e +—0
(b) A low-pass m section filter is shown in Figure 42.21(b), where
(b) the shunt arm capacitances are each (C/2) (see Figure 42.18), 1.e.,
Figure 42.21 (106/2) = 53 pF

(d) ‘Constant-k’ prototype low-pass filter

A ladder network is shown in Figure 42.22, the elements being expressed
in terms of impedances Z; and Z,. The network shown in Figure 42.22(b)
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Figure 42.22

1s equivalent to the network shown in Figure 42.22(a), where (Z,/2) in
series with (Z,/2) equals Z; and 2Z, in parallel with 2Z, equals Z-.
Removing sections ABED and FGJH from Figure 42.22(b) gives the T
section shown in Figure 42.23(a), which 1s terminated in its characteristic
impedance Zpr, and the w section shown in Figure 42.23(b), which is
terminated in its characteristic impedance Zy;.

From equation (41.1), page 760,

e |8 @)

ZE
LE., Z{J]' = \X (TI +Z]

;

From equation (41.3), page 760

Lox = ¢/
"\ |z + 202y

272
v"{zf AT T)

VAV A,

oT

1., Zoyr =

(Z1)(2Z>)> ]

Z\(Z1)(4Z3)
Z\(Z, +4Z,)

Z,Z,

& lel)

from equation (42.8)

(42.8)
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Thus ZorZox = Z1Z2 (42.9)

This 1s a general expression relating the characteristic impedances of T
and  sections made up of equivalent series and shunt impedances.

From the low-pass sections shown in Figures 42.17 and 42.18,

|
Zl = jELJL and Zg = —.
JoC

1 L
Hence ZyrZpy, = (jwl) (—) - —
oroxr = (J GaC C

Thus, from equation (42.5), | ZorZox = R} (42.10)

From equations (42.9) and (42.10),
ZorZox = Z1Z> = Ry = constant (k).

A ladder network composed of reactances, the series reactances being
of opposite sign to the shunt reactances (as in Figure 42.23) are called
‘constant-k’ filter sections. Positive (i.e., inductive) reactance is directly
proportional to frequency, and negative (i.e., capacitive) reactance 1s
inversely proportional to frequency. Thus the product of the series and
shunt reactances i1s independent of frequency (see equations (42.9) and
(42.10)). The constancy of this product has given this type of filter
its name.

From equation (42.10), 1t 1s seen that Zyr and Z;, will either be both
real or both imaginary together (since j* = —1). Also, when Zor changes
from real to imaginary at the cut-off frequency, so will Z;,. The two
sections shown in Figures 42.17 and 42.18 will thus have identical cut-
off frequencies and thus identical pass bands. Constant-k sections of any
kind of filter are known as prototypes.

(e) Practical low-pass filter characteristics

From equation (42.1), the characteristic impedance Zyy of a low-pass T
section is given by:

g L @*lL?
= C 4

Rearranging gives:

I EVIRONES

= J‘vf.‘.(}\"ff (1 = —) from equation (42.5)

4
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| .1
ie. | Zor = Ro:/ [1— (i) ] (42.11)

ie., B \/[1 B (5)1] (42.12)

(Alternatively, the expression for Z;, could have been obtained from
equation (42.4), where

( L
1 i
Z — _—
R | e L e o2
L 4 \LC\L 4 )]
IIIIILI
e R
\‘ C L as above).

V) @]

From equations (42.11) and (42.12), when @ = 0 (i.e., when the frequency
1S Zero),

Lor = Zox = Ry.

At the cut-off frequency, f., @ = @,
and from equation (42.11), Zyr falls to zero,

and from equation (42.12), Z;, rises to infinity.

These results are shown graphically in Figure 42.24, where it is seen
that Zyr decreases from Ry at zero frequency to zero at the cut-off
frequency; Zg, rises from its imtial value of Ry to infinity at f.

Ry

At a frequency, f = 0.95f ., for example, Z;, = = 3.2R
( quency, f f Ple, Zox = = T 0.95) 0

from equation (42.12)).
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Figure 42.24
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Figure 42.25

Note that since Zp becomes purely reactive in the attenuation band, it is
not shown in this range in Figure 42.24.

Figure 42.2(a), on page 791, showed an ideal low-pass filter section
charactenistic. In practise, the characteristic curve of a low-pass prototype
filter section looks more like that shown in Figure 42.25. The character-
istic may be improved somewhat closer to the ideal by connecting two
or more identical sections in cascade. This produces a much sharper cut-
off charactenistic, although the attenuation in the pass band is increased
a little.

Problem 3. The nominal impedance of a low-pass m section filter
1s 500 €2 and its cut-off frequency is at 100 kHz. Determine (a) the
value of the characteristic impedance of the section at a frequency
of 90 kHz, and (b) the value of the characteristic impedance of the
equivalent low-pass T section filter.
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At zero frequency the characteristic impedance of the m and T section
filters will be equal to the nominal impedance of 500 €2.

(a) From equation (42.12), the characteristic impedance of the 7 section
at 90 kHz is given by:

Ry 500
ZUH: ?_ 5 - 5
| [; - (i)] 1 2790 x 103\~
\ W, 27100 x 10°
= 2 — = 1147 Q
VIl —(0.97]

(b) From equation (42.11), the characteristic impedance of the T section
at 90 kHz is given by:

e

1 — (i)_] = 5001/[1 — (0.9)2] = 218

(Check: From equation (42.10),
ZorZox = (218)(1147) = 250000 = 500* = R})

Typical low-pass characteristics of characteristic impedance against
frequency are shown in Figure 42.24.

Problem 4. A low-pass w section filter has a nominal impedance
of 600 2 and a cut-off frequency of 2 MHz. Determine the
frequency at which the characteristic impedance of the section is
(a) 600 €2 (b) 1 k2 (c) 10 k2

Ry

-

(a) When Z;,=6002 and Ry;=600%2, then w =0, 1e., the
frequency is zero

(b) When Zy, = 1000 €, Ry =600  and f. = 2 x 10° Hz

From equation (42.12), Z,, =

600

\“l B (znifmﬁ)z]

then 1000 =
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42.6 High-pass filter
sections

;. f o\ /600
from Whth,l—(ZKlﬂﬁ) = m = (.36

f ),, _
and (2:{1{15 = /(1 -0.36) =0.8

Thus when Zox = 1000 €,

frequency, f = (0.8)(2 x 10°) = 1.6 MHz

When Zy; = 10 k2. then

600 where frequency,
10000 = — 2 ' f is in megahertz.
l . il
=@
£) = (o) =000
Thus 1 — (2 =\Toooo/) = (0.06)
and % = /[1 — (0.06)] = 0.9982

Hence when Z,, = 10 k€2, frequency f = (2)(0.9982)
= 1.996 MHz

The above three results are seen to be borne out in the characteristic of
Zyx against frequency shown in Figure 42.24.

Further problems on low-pass filter sections may be found in
Section 42.10, problems 1 to 6, page 837.

(a)

High-pass T and 7 sections are shown in Figure 42.26, (as derived in
Section (42.4)), each being terminated in their characteristic impedance.

The cut-off frequency

From equation (41.1), page 760, the characteristic impedance of a T

section 1s given by:

Zor = \/ (@5, + 2ZaZs)

From Figure 42.26(a), Z4 =

1
Thus Zor =
o 2= [(720)

PSTe and Zg = jowL

2

1 :
+ 2 (m) {;mL]]
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2C 2C
| - 1 + L
11 I N —4?C?  C
B gL - i Z (L : (42.13)
ie., T = — — ;
¥ C 4.1:?(:3)
Ia)
: ] L 1
- ZLor will be real when P2l = A2
Thus the filter will pass all frequencies above the point
Lo, 21 2L Zo where £ P I
4’ C?
L= ; . ]_
(6) ie., wherew’=— (42.14)
4L.C

Figure 42.26 where @, = 27 f,., and f. is the cut-off frequency.

1
Hence (2nfc)' = —
ence (2mf.) ALC
d th t-off f iz | = : 42.15
an e cut-off frequency, = I JLO) (42.15)

The same equation for the cut-off frequency is obtained for the high-pass
m network shown in Figure 42.26(b) as follows:

From equation (41.3), page 760, the characteristic impedance of a
symmetrical 7w section 1s given by:

» {{ Z:22
=] R e
e v Ly + 223

1
From Figure 42.26(b), Z, = —— and Z> = j2wlL
JaoC

(i S R 2
[ ( .mf) (j2wL)

Hence Zo, = ‘< jl
(f _4mL3 v [/ a2
= “ j ?1 }2 <
\ LJ(%L_E)j \ 4L—m1

(42.16)

__..-“"____'
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C 1
Zoz will be real when T > 122 and the filter will pass all frequencies
PETE
, C 1 , , 1
above the point where — = ——, 1.e., where w, = —— as above.
L AwL- 4L

Thus the cut-off frequency for a high-pass 7 network 1s also given by

1
4. /(LC)

b o (as in equation (42.15)) (42.15")

(b) Nominal impedance

When the frequency is very high, @ is a very large value and the term
(1/4w*C?) in equations (42.13) and (42.16) are extremely small and may
be neglected.

The characteristic impedance then becomes equal to /(L/C), this being
the nominal impedance. Thus for a high-pass filter section the nominal
impedance Ry is given by:

By= V" (%) (42.17)

the same as for the low-pass filter sections.

0.2 uF 0.2 uF
: | ’ . Problem 5. Determine for each of the high-pass filter sections
| | II shown in Figure 42.27 (1) the cut-off frequency, and (u1) the
nominal impedance.
% 100 mH
2 i i (a) Comparing Figure 42.27(a) with Figure 42.26(a) shows that:

(a)

2C = 0.2 yF, i.e., capacitance, C =0.1 yF=0.1 x 107° F
0pF
o ¥ I rﬂﬂ ° ¥ ]

and inductance, L = 100 mH = 0.1 H
g 200 pH ;’ 200 uH (1) From equation (42.15),
t-off frequency, f : l
2 ' S cut- requency, j.= —]
o . IT/LC)  dmy/[0.1)0.1 x 10-°]
. 1D3
Figure 42.27 e P — 706 Hz
47(0.1)

(1) From equation (42.17),

& 0.1
inal i d , Ry = — | =
nominal impedance, R, \X(CJ \X(U.l v l{)—ﬁ)

= 1000 Q or 1 kQ
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(b) Comparing Figure 42.27(b) with Figure 42.26(b) shows that:

2L = 200 pH, i.e., inductance, L = 100 yH = 107" H
and capacitance C = 4000 pF =4 x 107~° F

(1) From equation (42.15"),

|

cut-off frequency, f, = I I
n

1

- — —— =126 kHz
4/ [(1074)(4 x 107%)]

(1) From equation (42.17),

nominal impedance, Ry = (L — 10~
g e c) —V lax10-®
.'
10°
= — | =158 Q
{ (%)

(c) To determine values of L and C given Ry and f,

[f the values of the nominal impedance Ry and the cut-off frequency f.
are known for a high-pass T or 7 section it 1s possible to determine the
values of inductance L and capacitance C required to form the section.

¥ B { 5
From equation (42.17), Ry = ".fE = % from which, /L = Ry+/C

Substituting in equation (42.15) gives:

1 | 1

fe= AnVLJC  An(Ro/C)JC  4mRoC
f; hich, | capacitance C = ! 42.18)
rom which, pa _4?1'qu} (4.2.
1
Similarly, from equation (42.17), +/C = \;;—
0
e : 2 ] Ro
Substituting in equation (42.15) gives: f. = =
VL 4L
dn/L | —
Ro
_ ) Ro
from which, | inductance, L = (42.19)
Axf,

Scanned with CamScanner



Filter networks 811

Problem 6. A filter is required to pass all frequencies above
25 kHz and to have a nominal impedance of 600 €2. Design (a) a
high-pass T section filter and (b) a high-pass m section filter to
meet these requirements.

Cut-off frequency, f. = 25 x 10° Hz and nominal impedance,
Ry = 600 2

From equation (42.18),

-
10.61 nF 10.61 nF 1 1 ”]1_

) T [l ] C= . s -
3 3 inRof.  A7(600)(25 x 109 = 47(600)(25 x 10°) ©

1.e., C =35305pF or 5.305 nF

1.91 mH
5 | ,  From equation (42.19), inductance,
- fom o H = 1.91 mH
— — - = 1. m
#ARE nf,  4m(25 x 103)
O . I I O
(a) A high-pass T section filter is shown in Figure 42.28(a) where the
ga.az mH g 3.82 mH series arm capacitances are each 2 C (see Figure 42.26(a)), i.e.,
2 x 5.305 = 10.61 nF
9 * N — (b) A high-pass 7 section filter is shown in Figure 42.28(b), where the
’ shunt arm inductances are each 2 L (see Figure 42.26(b)), i.e.,
Figure 42.28 2x 191 =3.82 mH

(d) ‘Constant-k’ prototype high-pass filter

[t may be shown, in a similar way to that shown in Section 42.5(d), that
for a high-pass filter section:

ZorZox = Z,Z; = R}
where Z; and Z, are the total equivalent series and shunt arm impedances.

The high-pass filter sections shown in Figure 42.26 are thus ‘constant-k’
prototype filter sections.

(e) Practical high-pass filter characteristics

From equation (42.13), the characteristic impedance Zyr of a high-pass
T section is given by:

5 (L 1 )
=Y\ w20
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Rearranging gives:

o= \/[g (' B %EILE)] - \/@) Vf(l ) %ij)

From equation (42.14), @2 = ——
quation: (4219 @ = iTe

2
Thus | Zgp = nﬂ\/ [1 _ (""_) ] (42.20)
L]

Also, since ZLorZox = R;

then L=

ie., B \/[1 B (%)1] (42.21)

From equation (42.20),

when @ < w_. Zyr 1s reactive,
when @ = w,, Zyr 18 zero,
and when @ > @,, Zyy 1s real, eventually increasing to R,
when w is very large.

Similarly, from equation (42.21),

when @ < @, Zy, 15 reactive,

when @ = w., Lox = oC (1.2., E = X)

and when @ > @, Zgy 1s real, eventually decreasing to Ry
when @ is very large.

Curves of Zyr and Z,, against frequency are shown in Figure 42.29.

Figure 42.4(a), on page 792, showed an ideal high-pass filter section
characteristic of attenuation against frequency. In practise, the character-
istic curve of a high-pass prototype filter section would look more like
that shown in Figure 42.30.
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2ok
F |
I [ [
| = i
! 2 J
4 I 2 I
Zan | B :
I =
| < |
g | l
| Nominal
L B et o e e T__--____---__-_ierEdEn_ce :
|
| |
Zot § :
|
I _
. 2 e Frequency
~. 0 fe Frequency b + >
Attenuation Attenuation Pass-band
- b —»Li Pass band ——» band
Figure 42.29 Figure 42.30

Problem 7. A low-pass T section filter having a cut-off frequency
of 15 kHz is connected in series with a high-pass T section filter
having a cut-off frequency of 10 kHz. The terminating impedance
of the filter is 600 €.

(a) Determine the values of the components comprising the
composite filter.

(b) Sketch the expected attenuation against frequency
characteristic.

(c) State the name given to the type of filter described.

(a) For the low-pass T section filter: f., = 15000 Hz
From equation (42.6),
1 1

capacitance, C = — = = 35.4 nF
nRof.  m(600)(15000)

From equation (42.7),

Ro 600

7fe (15000 m

inductance, L =

Thus from Figure 42.17, the series arm inductances are each L/2,
1.e., (12.73/2) = 6.37 mH and the shunt arm capacitance is 35.4 nF.

For a high-pass T section filter: f., = 10000 Hz
From equation (42.18),

| 1

AnR, f. _ 47(600)(10000) .

capacitance, C =
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From equation (42.19),

Ry 600

Anf. 4710000 o

inductance, L =
Thus from Figure 42.26(a), the series arm capacitances are each 2 C,
1.e., 2 x 13.3 = 26.6 nF, and the shunt arm inductance is 4.77 mH.

The composite filter 1s shown in Figure 42.31.

26.6 nF 26.6 nF

6.37 mH 6.37 mH I I
O—————— YY" g YV O I | O
| |
e 35.4 NF 77 mH 600 O
o - O O

Figure 42.31

(b) A typical characteristic expected of attenuation against frequency 1s
shown in Figure 42.32.

_E T High-pass |
T | characteristic |
5 I Low-pass
= | characteristic
|
I
|
|
|
|
|
[
[
| | -
0 fc, =10 kHz fc, = 15 kHz Frequency
- —
Attenuation Pass band Attenuation
band band

Figure 42.32

(¢) The name given to the type of filter described is a band-pass filter.
The 1deal characteristic of such a filter is shown in Figure 42.5.

Problem 8. A high-pass T section filter has a cut-off frequency
of 500 Hz and a nominal impedance of 600 €2. Determine the
frequency at which the characteristic impedance of the section is
(a) zero, (b) 300 £2, (c) 590 2.
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II|
From equation (42.20), Zor = Ry V"

w\ 2
(5] ]
(e
(a) When Zyr = 0, then (e, /@) = 1, 1e., the frequency is 500 Hz, the
cut-off frequency.

(b) When Zyr = 300 Q, Ry = 600 Q and f. = 500 Hz

znﬁﬂﬂ)l

300 = f.{mvf [1 = ( o

3000 2 500 2
from which ( ) =1 (—)

600 f
500 300>
d —=/1-—] | =+0.75
i 2 \/[ (ﬁm)] J
Thus when Z 300 @, £ f 200 5774 H
us when T . Irequency, [ = —— A z
07 q ¥ J0.75
| 500
(¢) When Zyr = 590 €, 590 = ﬁ{}ﬂv'f [1 — (T) ]
500 | (59{])3 |
= - (=) | =0.1818
F o\ [ 600 ]
500
Thus when Zyyr = 590 2, frequency, f = T18I8 = 2750 Hz

The above three results are seen to be borne out in the charactenstic of
Zyr against frequency shown in Figure 42.29.

Further problems on high-pass filter sections may be found in
Section 42.10, problems 7 to 12, page 837.

42.7 Prupagﬂﬁﬂn Propagation coefficient
coefficient and time delay

in filter sections In Figure 42.33, let A, B and C represent identical filter sections, the

current ratios (I,/1-), (I-/I5) and (I5/14) being equal.
Although the rate of attenuation is the same in each section (i.e., the
current output of each section is one half of the current input) the amount

of attenuation in each is different (section A attenuates by % A, B atten-
uates by ; A and C attenuates by 3 A). The attenuation is in fact in the
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o - >

A B C | I
o

Figure 42.33

form of a logarithmic decay and

I, I, I
Ll Pep ¥ (42.22)
I, I I,

where y 1s called the propagation coefficient or the propagation
constant.

From equation (42.22), propagation coefficient,

y = lt1i—1 nepers (42.23)
¥
(See Section 41.3, page 761, on logarithmic units.)

Unless Sections A, B and C in Figure 42.33 are purely resistive there
will be a phase change in each section. Thus the ratio of the current
entering a section to that leaving it will be a phasor quantity having both
modulus and argument. The propagation constant which has no units is a
complex quantity given by:

y=a+ jp (42.24)

where o 1s called the attenuation coefficient, measured in nepers, and g
the phase shift coefficient, measured in radians. S is the angle by which
a current leaving a section lags behind the current entering it.

From equations (42.22) and (42.24),

; ) .
j’_] — g = Eﬂﬂﬁ i (E.ﬂ]{f,rﬁ]
Sinc 2 3 x? r©
mce E—l+r+21—|—§+—+ + ..
; ; GRY: - G . GpYr . Ger
B _
then e =1+(jf)+ > + T + T + T | e
. B B B F
=l+jﬁ—E— ?+—+_ﬂ'§+ ......
since jz =—l.j3 = —j,j° =+1, and so on.
- g B g p
Hence EJ’B=(]—E+$—.“. ﬂ———|—;— T

= cos f + jsin B from the power series for cos f and sin
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I :
Thus — = e%e/f = e“(cos B+ jsin B) = €“Zp in abbreviated polar form,

I
I
ie., —=e"lB (42.25)
I,
Now &= f—]
I
from which
. , I
attenuation coefficient, « = In |—| nepers or 20 lg |—| dB
2 2

If in Figure 42.33 current /> lags current /; by, say, 30° 1.e., (7n/6) rad,
then the propagation coefficient y of Section A is given by:

1
T
3
ie, y=(0.693+;0.524)

T
y=a+ jf=In —|—jg

If there are n 1dentical sections connected in cascade and terminated in
their characteristic impedance, then

{ ot
L s (e¥ )" = "V = MletiP) — e inf, ...... (42.26)

Jf::f+]

where [,+; 1s the output current of the n’th section.

Problem 9. The propagation coefficients of two filter networks are
given by

(@) y = (1.25 + j0.52), (b) y = 1.794/—39.4°

Determine for each (1) the attenuation coefficient, and (11) the phase
shift coefficient.

(a) If y = (1.25 + j0.52)

then (1) the attenuation coefficient, v, i1s given by the real part,
e, a=125N

and (i1) the phase shift coefficient, B, 1s given by the imaginary
part,

.e., B=0.52rad
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(b) ¥ =1.794L-39.4" = 1.794[cos(—39.4°) + jsin(—39.4°)]
= (1.386 — j1.139)

Hence (1) the attenuation coefficient, « = 1.386 N

and (11) the phase shift coefficient, § = —1.139 rad

Problem 10. The current input to a filter section is 24/10° mA and
the current output 1s 8£.—45° mA. Determine for the section (a) the
attenuation coefficient, (b) the phase shift coefficient, and (c) the
propagation coefficient. (d) If five such sections are cascaded
determine the output current of the fifth stage and the overall
propagation constant of the network.

Let I, =24/10° mA and I, = 8/—45° mA. then
I, 24.10°

I, 8[—45° = 3£55° = €“ /B from equation (42.25).

(a) Hence the attenuation constant, «, 1s obtained from 3 = ¢“, 1e.,
a=In3=1099 N

(b) The phase shift coefficient g = 55° x % = 0.960 rad

(¢) The propagation coefficient y = a + jf = (1.099 4+,0.960) or
1.459/41.14°

(d) If I 1s the current output of the fifth stage, then from
equation (42.26),

I
:_1 = (&”)" = [3/55°]" = 243/275° (by De Moivre's theorem)
6

Thus the output current of the fifth stage,

I 24£10°

T 2437275°  2434275°
— 0.0988/—265° mA or 98.8/95° pA

I

Let the overall propagation coefficient be y’

I f f ¢
then — =243/275°=¢" =¢° LB

Ig
The overall attenuation coefficient o' = In 243 = 5.49

and the overall phase shift coefficient g’ = 275° x IET = 4.80 rad

Hence the overall propagation coefficient ¥’ = (5.49 +j4.80) or
7.29/41.16°
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Problem 11. For the low-pass T section filter shown in
Figure 42.34 determine (a) the attenuation coefficient, (b) the phase
shift coefficient and (c) the propagation coefficient y.

I X, =j5 0 X =j5Q
O = AAAA #- A A A A

'fE
-

(e

R =12Q

(e

o e

Figure 42.34

X
By current division in Figure 42.34, I, = ( Y ) I
X{_" —|— XL + RL

I Xc+XL+RL

— 710+ j5+ 12 — 5412
from which — ] J = J

I, ¥ 10 10
—J3 12
= —— + —
—j10  —;10
0.5+ j12 05+ 1.2
—5 1B T j1.2

= 1.3£67.38° or 1.3£1.176

I
From equation (42.25). ;_1 = e“L8 =1.3/1.176

2

(a) The attenuation coefficient, « =In1.3 =0.262 N
(b) The phase shift coefficient, g = 1.176 rad

(¢) The propagation coefficient, y = o + j = (0.262 4+ j1.176) or
1.205477.44°

Variation in phase angle in the pass-band of a filter

In practise, the low and high-pass filter sections discussed in Sections 42.5
and 42.6 would possess a phase shift between the input and output volt-
ages which varies considerably over the range of frequency comprising
the pass-band.

Let the low-pass prototype T section shown in Figure 42.35 be termi-
nated as shown in its nominal impedance Ry. The input impedance for
frequencies much less than the cut-off frequency is thus also equal to Ry
and 1s resistive. The phasor diagram representing Figure 42.35 is shown
in Figure 42.36 and 1s produced as follows:
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L L
I 2 7 I
o NV YV o
A - v - v, o A
L1 Lz
A
Vi Ve ::r: Vs Ry

Figure 42.35

(1) V; and I, are in phase (since the input impedance is resistive).

wl
(1) Voltage Vy, =1,X; =1, (T) which leads I by 90°.

(m1) Voltage V 1s the phasor sum of Vp; and V¢. Thus V¢ is drawn
as shown, completing the parallelogram oabc.

(iv) Since no power 1s dissipated in reactive elements V; =V, in

magnitude.
wL wl
(v) Voltage Vo =15 (—) =1 (—j = Vi
2 2
(vi) Voltage V¢ 1s the phasor sum of V> and V> as shown by triangle
Figure 42.36 ocd, where V> 1s at right angles to V>

(vi1) Current /5 1s in phase with V5 since the output impedance 1s resis-
tive. The phase lag over the section is the angle between V; and
V> shown as angle 8 in Figure 42.36,

/ oL wlL
oa Vi N9 3

where tan E = = — sl
2 ob 1"1 Ij R{} Rﬂ
wlL
D LC
From equation (42.5), Ry = \F,' -’ thus tan — = /ZL = m\/; )
Ve
. . T . S
For angles of 8 up to about 20°, tan 5 My radians
LC
T sty s, [P BV EC]
2 2
from which, phase angle,l B = w/(LC) radian (42.27)

Since 8 = 2xf/(LC) = (27/(LC)) f then B is proportional to f and a
graph of B (vertical) against frequency (horizontal) should be a straight
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line of gradient 2x./(LC) and passing through the origin. However in
practise this 1s only usually valid up to a frequency of about 0.7 f. for a
low-pass filter and a typical characteristic is shown in Figure 42.37. At the
cut-off frequency, p = m rad. For frequencies within the attenuation band,
the phase shift 1s umimportant, since all voltages having such frequencies
are suppressed.

Fi il ettt

Phase angle /

£ (rad)

|deal characterisiic

I

|

I :

I Practical curve
|

I

L—T

>
0.71; A Frequency

: Peisias Bisiidl >|‘ Aitenuation 5 \
band

|
|
|
|
|
|
|
|
|
f

Figure 42.37

A high-pass prototype T section i1s shown in Figure 42.38(a) and 1its
phasor diagram in Figure 42.38(b), the latter being produced by similar
reasoning to above.

2C 2C
O - O—>
A A 4
e e
" Ve, Ve,
1 V, L V; Ro
O O
(a)

Figure 42.38
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From Figure 42.38(b), tan

Vi IRy  2wCRg
1 1

S V; % 2w/ (LC)

1
B _Va (mEC) 1
2

1 1
T wJ(LC)  QrJ(LO)f

e, B

for small angles.

Thus the phase angle is universely proportional to frequency. The S/ f
characteristics of an i1deal and a practical high-pass filter are shown in
Figure 42.39.

A
e
Phase :
angls : Ideal
B (rad) : characleristic
: Practical
: curve
:
i
L
0 f, Frequency

Attenuation
W —>|<7 Pass band —»‘

Figure 42.39

Time delay

The change of phase that occurs in a filter section depends on the time
the signal takes to pass through the section. The phase shift § may be
expressed as a time delay. If the frequency of the signal is f then the
periodic time is (1/f) seconds.

1
Hence the time delay = £ K —
- EH f

From equation (42.27), B = w+/(LC). Thus

w+/(LC)

@

time delay = = J(LC) (42.28)

when angle £ is small.
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Equation (42.28) shows that the time delay, or transit time, is
independant of frequency. Thus a phase shift which 1s proportional to
frequency (equation (42.27)) results in a time delay which 1s independant
of frequency. Hence if the input to the filter section consists of a complex
wave composed of several harmonic components of differing frequency,
the output will consist of a complex wave made up of the sum of
corresponding components all delayed by the same amount. There will
therefore be no phase distortion due to varying time delays for the separate
frequency components.

In practise, however, phase shift g tends not to be constant and the
increase in time delay with rising frequency causes distortion of non-
sinusoidal inputs, this distortion being superimposed on that due to the
attenuation of components whose frequency is higher than the cut-off
frequency.

At the cut-off frequency of a prototype low-pass filter, the phase angle
f = m rad. Hence the time delay of a signal through such a section at the
cut-off frequency is given by

B T 1 1 :
— = = = from equation (42.3),
o 2nf. 2fc 5 1 aption (#2=
7/ (LC)
; ./ (LC
e, at f. | the transit time = # seconds (42.29)
0.5 H 05H ‘ -
A A A A A Problem 12. Determine for the filter section shown in Figure 42.40,
(a) the time delay for the signal to pass through the filter, assuming
—— the phase shift is small, and (b) the time delay for a signal to pass
through the section at the cut-off frequency.
o - O

Comparing Figure 42.40 with the low-pass T section of Figure 42.13(a),

Figure 42.40 shows that

— = 0.5 H, thus inductance L = 1 H, and capacitance C = 2 nF

(a) From equation (42.28),
time delay = /(LC) = +/[(1)(2 x 107%)] = 44.7 ps

(b) From equation (42.29), at the cut-off frequency,

time delay = %J(LC} — %{44.?] — 702 ps
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Problem 13. A filter network comprsing n identical sections
passes signals of all frequencies up to 500 kHz and provides a
total delay of 9.55 ps. If the nominal impedance of the circuit into
which the filter 1s inserted 1s 1 k€2, determine (a) the values of the
elements 1n each section, and (b) the value of n.

Cut-off frequency, f. = 500 x 10° Hz and nominal impedance
R, = 1000 Q.

Since the filter passes frequencies up to 500 kHz then it is a low-pass
filter.

(a) From equations (42.6) and (42.7), for a low-pass filter section,

1 1
aRofe  w(1000)(500 x 103)
Ro 1000

and inductance, L = <7, = 2500 % 109) = 636.6 pH

capacitance, C = = 636.6 pF

Thus if the section is a low-pass T section then the inductance in
each series arm will be (L/2) = 318.3 pH and the capacitance in
the shunt arm will be 636.6 pF.

If the section i1s a low-pass w section then the inductance in the
series arm will be 636.6 pH and the capacitance in each shunt arm
will be (C/2) = 318.3 pF

(b) From equation (42.28), the time delay for a single section
— J(LC) = /[(636.6 x 107°)(636.6 x 107'%)] = 0.6366 us

For a time delay of 9.55 ps therefore, the number of cascaded
sections required 1s given by

9.55

TR pres {8
0.6366 Mt

Problem 14. A filter network consists of 8 sections in cascade
having a nominal impedance of 1 k€. If the total delay time is
4 ps, determine the component values for each section if the filter

1s (a) a low-pass T network, and (b) a high-pass 7 network.

Since the total delay time is 4 ps then the delay time of each of the 8

sections is z, i.e., 0.5 ps

From equation (42.28), time delay = /(LC)

Hence 0.5 x 107° = /(LC) (i)
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'L
Also, from equation (42.5), VIE = 1000 (11)

From equation (i), v'L = 1000+/C
Substituting in equation (i) gives: (.5 x 107 = {Iﬂ{}ﬂJC]JC = 1000 C

0.5 x 107°

f hich, ¢ itance C = = (.5 nF

rom which, capacitance T n

o VL

F t AN = ——

rom equation (ii), v/ T

VL L

Substituting i ion (i) gives: 0.5 x 1076 = (VL) [ —— | = —
ubstituting in equation (i) gives X (+/L) (l{]{]ﬂ i

from which, inductance, L = 500 pH

(a) If the filter 1s a low-pass T section then, from Figure 42.13(a), each
series arm has an inductance of L/2, i.e., 250 pH and the shunt arm
has a capacitance of 0.5 nF

(b) If the filter 1s a high-pass & network then, from Figure 42.16(b),
the series arm has a capacitance of 0.5 nF and each shunt arm has
an inductance of 2 L, 1.e., 1000 pH or 1 mH.

Further problems on propagation coefficient and time delay may be found
in Section 42.10, problems 13 to 18, page 838

42.8 ‘m-derived’ filter (a) General

sections
In a low-pass filter a clearly defined cut-off frequency followed by a high

attenuation is needed; in a high-pass filter, high attenuation followed by a
clearly defined cut-off frequency is needed. It is not practicable to obtain
either of these conditions by wiring appropriate prototype constant-k
sections in cascade. An equivalent section is therefore required having:

(1) the same cut-off frequency as the prototype but with a rapid rise in
attenuation beyond cut-off for a low-pass type or a rapid decrease
at cut-off from a high attenuation for the high-pass type,

(1) the same value of nominal impedance Ry as the prototype at
all frequencies (otherwise the two forms could not be connected
together without mismatch).

[f the two sections, i.e., the prototype and the equivalent section, have the
same value of R; they will have identical pass-bands.

The equivalent section is called an ‘m-derived’ filter section (for
reasons as explained below) and is one which gives a sharper cut-off
at the edges of the pass band and a better impedance characteristic.
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= (b) T sections

ba| I
1

A prototype T section is shown in Figure 42.41(a). Let a new section be
constructed from this section having a series arm of the same type but of
4 different value, say mZ,, where m is some constant. (It is for this reason
that the new equivalent section i1s called an *m-derived’ section.) If the
characteristic impedance Z,r of the two sections is to be the same then
the value of the shunt arm impedance will have to be different to Z,.
Let this be Z, as shown in Figure 42.41(b).
The value of Z) is determined as follows:
From equation (41.1), page 760, for the prototype shown in Fig-

(a)

ure 42.41(a):
dFidie Z
e &) (%)
1.e Lor = 'lll Z_f VAV A
£ or = V r +Z,Z; (a)

Figure 42.41
Similarly, for the new section shown in Figure 42.41(b),

o= [(2) (2]

. / m-Z3 .
1.e.. Zor = \ + mi\Z, (b)

4

Equations (a) and (b) will be identical if:

5

Z mEZ%
T + Z1\ZLr =

— mZIZE

2

: Zy
Rearranging gives: mZ\Z, =Z1Z>+ T]{I —m?)

Z 1— m?
ie., p I ) ( s ) (42.30)

m 4dm

Thus impedance Z; consists of an impedance Z:/m in series with an
impedance Z, ((1 — m?)/4m). An additional component has therefore been
introduced into the shunt arm of the m-denived section. The value of m
can range from O to 1, and when m = 1, the prototype and the m-derived
sections are identical.

(¢)  sections

A prototype T section 1s shown in Figure 42.42(a). Let a new section be
constructed having shunt arms of the same type but of different values,
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2, say Z./m, where m is some constant. If the characteristic impedance Z;,
o of the two sections is to be the same then the value of the series arm
1 T impedance will have to be different to Z;.
Let this be Z| as shown 1n Figure 42.42(b).
The value of Z| is determined as follows:
From equation (42.9), ZyrZy, = Z,Z>
l l & Thus the characteristic 1mpedance of the section shown in
Figure 42.42(a) 1s given by:

(a)

7 YAV YAVA ©
— — C
Z', "= Zor l.E 2
o T I o v‘ 1 +Z,4>
2Z; 2% from equation (a) above.

For the section shown in Figure 42.42(b),

- L 2

Zi
(b) Zow = — i (d)
_ [ (@Z) 2
Figure 42.42 V T+Z';

Equations (c) and (d) will be identical if

Z.Z> zZ,—

| {72 o F 32 ;
J(Fezm) | (5Fen2)
m

Dividing both sides by Z> and then squaring both sides gives:

. (Z))?
AT _ m
. - . ¥
Ly zizy Sl 0%
4 - m
ik N o 5 g ol 7.5
Thus Z% ( 1] 3 32 _ ( 11] 1 LiF 2
4 m m 4

B@y | 7z, _ V75| @4z,

1.e..
4 m 4m?2 m2

Multiplying throughout by 4m? gives:
m2Z3(Z)Y + 4mZ3Z\Z> = (Z\VZ3 + M(Z})*Z,Z,
Dividing throughout by Z) and rearranging gives:

4mZiZ> = Z\(Z} +4Z,Z, — m*Z7)
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AmZ>Z
Thus Z) = - > = -
4Z\ZL3 + Z7(1 — m~)
dmZ,Z
ie. 2! e (42.31)

Z. =
' 42, + 2,1 — m?)

An impedance mZ, in parallel with an impedance (4mZ>/1 — m”) gives
(using (product/sum)):

7 AdmZ-

) — - (mZy)AmZ _ 4mZ\2Z,
dmZ, — m2 - - id

W2, 4 : 2., mZ(1 —m*)+4mZ, 4Z-+ Z;(1 —m~)
— m=

Hence the expression for Z| (equation (42.31)) represents an impedance
mZ, in parallel with an impedance (4m/1 — m*)Z,
(d) Low-pass ‘m-derived’ sections

The ‘m-derived’ low-pass T section is shown in Figure 42.43(a) and is
derived from Figure 42.13(a), Figure 42.41 and equation (42.30). If Z,

oL mL represents a pure capacitor in Figure 42.41(a), then Z> = (1/&C).
D—""W‘I"""“—G A capacitance of value mC shown in Figure 42.43(a) has an impedance
mC
1 1 1 Z
; —— = — | — | = — as in equation (42.30).
‘?ﬁ:}i wmC m (mf) m 2 ( )
o 0

The ‘m-derived’ low-pass m section is shown in Figure 42.43(b) and 1s
derived from Figure 42.13(b), Figure 42.42 and from equation (42.31).

] e 2
AR 1 I Note that a capacitance of value ( 1 i ) C has an impedance of
I m
—— ii ——
B () 1T ! ( 4m ) ( 1 ) ( 4m )
) = 3 = T Zy
o S— —0 1] —m* C 1 —m- wC 1 —m-
w
= 4m

Figure 42.43 _ )
where Z, 1s a pure capacitor.

In Figure 42.43(a), series resonance will occur in the shunt arm at a
particular frequency —thus short-circuiting the transmission path. In the
prototype, infinite attenuation is obtained only at infinite frequency (see
Figure 42.25).

In the m-derived section of Figure 42.43(a), let the frequency of infinite
attenuation be f ... then at resonance: X; = X,

, 1 —m? 1
1.€., e I =
Am wcmC
‘ 1 4
from which, @2 = - = -
1 —m~ LCA1 —m=)
(mC)
4m
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From equation (42.2),

"
Wy
(1—m?)

7 — mf. thus mi =

where @, = 2 f ., f. being the cut-off frequency of the prototype.

0,

Hence @y = - (42.32)
V(1 —m?)

R e 2 (1 2 2
earranging gives: W (1 —m") = w,
2 2 2 __ .2
W, — M @, = @

w2, — > >

. - .

m=—=1-—

(L7 il -

ie, |[m= V'“I [1 -~ ({f:ﬂ (42.33)

In the m-derived 7 section of Figure 42.43(b), resonance occurs in the
parallel arrangement comprising the series arm of the section when

- 4
= . when & =

W = .
1 — m> LC(1 —m?)
mL C

as in the series resonance case (see Chapter 28).

Thus equations (42.32) and (42.33) are also applicable to the low-pass
m-derived  section.

In equation (42.33), 0 <m < 1, thus f. > f..

The frequency of infinite attenuation f .. can be placed anywhere within
the attenuation band by suitable choice of the value of m; the smaller m
1s made the nearer 1s f ., to the cut-off frequency, f..

Problem 15. A filter section i1s required to have a nominal
impedance of 600 €2, a cut-off frequency of 5 kHz and a frequency
of infinite attenuation at 5.50 kHz. Design (a) an appropriate ‘m-
derived’ T section, and (b) an appropriate ‘m-derived’ m section.

Nominal impedance R, = 600 €2, cut-off frequency, f. = 5000 Hz and
frequency of infinite attenuation, f.. = 5500 Hz. Since f. = f. the
filter section 1s low-pass.
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From equation (42.33),

e (] - G e

For a low-pass prototype section:

1 1
from equation (42.6), capacitance, C =~ = =~ 5 =500)
= (.106 pF
R 600
and from equation (42.7), inductance, L = = nr — 2(5000)
= 38.2 mH

(a) For an ‘m-derived’ low-pass T section:
From Figure 42.43(a), the series arm inductances are each

mL  (0.4166)(38.2)

> 5 —7.957 mH,

and the shunt arm contains a capacitor of value mC,

1.e., (0.4166)(0.106) = 0.0442 pF or 44.2 nF. in series with an
inductance of

1 —0.41662
al L= 38.2).
vatue ( T ) ( 4(0.4166) ){ )

1e., 18.95 mH
7.857 mH 7.957 mH The appropriate ‘m-derived’ T section is shown in Figure 42.44.
o SNV 0
_l_ (b) For an *m-denived’ low-pass  section:
44.2 nF
From Figure 42.43(b) the shunt arms each contain capacitances
S—— equal to mC /2,
O 0
0.4166)(0.106
: 1.€., ( ) ) = 0.0221 pF or 22.1 nF,
Figure 42.44 2
and the series arm contains an inductance of value m L,
1.e., (0.4166)(38.2) = 15.91 mH in parallel with a capacitance of
L 1 —m? 1 — 0.4166
value C = (0.106)
o " ° m 4(0.4166)
—— 52.6 nF ——] = 0.0526 pF or 52.6 nF
221 nF 221 nF

The appropriate ‘m-derived’ s section is shown in Figure 42.45.
Figure 42.45
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(e)

High-pass ‘m-derived’ sections

Figure 42.46(a) shows a high-pass prototype T section and Figure 42.46(b)
shows the ‘m-denived’ high-pass T section which i1s derived from
Figure 42.16(a), Figure 42.41 and equation (42.30).

Figure 42.46

Figure 42.47

(a)

Figure 42.47(a)
Figure 42.47(b) shows the ‘m-derived’ high-pass 7 section which is
derived from Figure 42.16(b), Figure 4242 and equation (42.31). In
Figure 42.46(b), resonance occurs in the shunt arm when:

2C 2C
) e T T
o o O
| | I I ] I
L
1
4m
Cc
T )
o o© o
(b)
shows a high-pass prototype x section and

L 1
™ ( 4m ) C
1]
N1 —m?
ie hen > L= 2(1 ?) from equation (42.14)
1.€., W = = ¥ —m I LI:nid .
- 4L.C € d
ie., Wae = Wer/ (1 —m?) (42.34)
2
Hence 2 — 1 —m?
@;
c
m
: 1
O 4 | | . O o ]
Y
(4m ) L
= g 2L § 21 % 1-m? ap
m
O & - 0 O ]

(b)
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| 2
from which, | m = ,Vf [1 — (f_T) ] (42.35)

For a high-pass section, f. < f..

[t may be shown that equations (42.34) and (42.35) also apply to the
‘m-derived’ m section shown in Figure 42.47(b).

Problem 16. Design (a) a suitable ‘m-derived” T section, and
(b) a suitable ‘m-derived’ m section having a cut-off frequency of
20 kHz, a nominal impedance of 500 €2 and a frequency of infinite
attenuation 16 kHz.

Nominal impedance Ry = 500 €2, cut-off frequency, f. = 20 kHz and the
frequency of infinite attenuation, f., = 16 kHz. Since f., < f. the filter
1s high-pass.

From equation (42.35), m = \,'fl [I B (J}l )2] B \/ [l B (%)2]

= (.60

For a high-pass prototype section:
From equation (42.18), capacitance,

I I
T 4xRyf.  47(500)(20000)

C = 7.958 nF

and from equation (42.19), inductance,

Ry 500

A7f.  47(20000) o

L

(a) For an ‘m-derived’ high-pass T section:

From Figure 42.46(b), each series arm contains a capacitance of
value 2C /m, 1.e., 2(7.958)/0.60, i.e., 26.53 nF, and the shunt arm

contains an inductance of value L/m, 1.e., (1.989/0.60) = 3.315 mH
in series with a capacitance of value

26.53nF 26.53nF
4m 4(0.60)
Cie, | ————— ] (7.958) = 29.84 nF
o I ” °© (l—ml) (I—ﬂ.ﬁﬂl){ )
3315 mkl A suitable ‘m-derived’ T section is shown in Figure 42.48.
T 29.84 nF (b) For an ‘m-derived’ high pass 7 section:
o 0

From Figure 42.47(b), the shunt arms each contain inductances equal
Figure 42.48 to 2L/m, 1e., (2(1.989)/0.60), 1.e., 6.63 mH and the series arm
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i contains a capacitance of value C/m, i.e., (7.958/0.60) = 13.26 nF
n S in parallel with an inductance of value (dm/1 — m>)L,
oo ; 4(0.60
g 7 450 mb ie.. (—{ ]_J) (1.989) = 7.459 mH
6,63 mH 6 63 mH 1 — 0.60-
o I o A suitable ‘m-derived’ m section is shown in Figure 42.49,

Figure 42.49

Further problems on ‘m-derived’ filter sections may be found in
Section 42.10, problems 19 to 22, page 839

429 Practical Enmpusite In practise, filters to meet a given specification often have to comprise a
filters number of basic networks. For example, a practical arrangement might
consist of (1) a basic prototype, in series with (1) an *m-derived’ section,
with (ii1) terminating half-sections at each end. The ‘m-derived’ section
improves the attenuation immediately after cut-off, the prototype improves
the attenuation well after cut-off, whilst the terminating half-sections are
used to obtain a constant match over the pass-band.
Figure 42.50(a) shows an ‘m-derived’ low-pass T section, and
Figure 42.50(b) shows the same section cut into two halves through AB,
each of the two halves being termed a “half-section’. The ‘m-derived” half
section also improves the steepness of attenuation outside the pass-band.

mL mL. mL mL
= - 2 2 A 2
VY ---...r/wvvx_
: 1 . |
L1 2 - 2
1 - m2 1 - mée i 1-m
() (7 3305
T
o o I 2L
BI

(a) (b)
Figure 42.50

As shown in Section 42.8, the ‘m-denved’ filter section 1s based on a
prototype which presents its own characteristic impedance at its terminals.
Hence, for example, the prototype of a T section leads to an ‘m-derived’
T section and Zor = Zor(my Where Zpr is the characteristic impedance
of the prototype and Zgr,, is the charactenistic impedance of the ‘m-
derived’ section. It 1s shown in Figure 42.24 that Zyr has a non-linear
characteristic against frequency; thus Zgyr(,, will also be non-linear.

Since from equation (42.9), Zy, = (Z,Z:/Zy7r ), then the characteristic
impedance of the *m-derived’ m section,

ZiZh B Z1 7
L0T(m) Lor

Omrim) =—
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where Z| and Z/, are the equivalent values of impedance in the *m-derived’
section.

From Figure 4241, Z| = mZ, and from equation (42.30),

. Z 1 —nt
2= %y
m 4m

Z 1 —m?
mZ [—2+( i )Zl
m 4dm

Zor
7475 1 —m?*
it z 42.36
Zir +( AZ, ) ’] ($2.56)
e 2
i B [ 2, (42.37)
47,

Thus the impedance of the ‘m-derived’ section is related to the impedance
of the prototype by a factor of [1 + (1 — m*/4Z,)Z,] and will vary as m
varies.

%EH m = ].. Zﬂq’{m.] = Zﬂn’

Lor 47,
1

or

Z\Z 7
When m = 0, Zgpm) = i [l - : } from equation (42.36)
5

z!
lej + T

y.

However from equation (42.8), Z,Z2 + Tl =72

A

Z_
Hence, when m = 0, Zggm) = Z—M = Zor

or

Thus the characteristic of impedance against frequency for m = 1 and
m = () shown in Figure 42.51 are the same as shown in Figure 42.24.
Further characteristics may be drawn for values of m between 0 and 1 as
shown.

It is seen from Figure 42.51 that when m = 0.6 the impedance is prac-
tically constant at Rp for most of the pass-band. In a composite filter,
‘m-derived’ half-sections having a value of m = 0.6 are usually used at
each end to provide a good match to a resistive source and load over the
pass-band.

Figure 42.51 shows characteristics of ‘m-derived’ low-pass filter
sections; similar curves may be constructed for m-derived high-pass filters
with the two curves shown in Figure 42.29 representing the limiting
values of m = 0 and m = 1.

The value of m needs to be small for the frequency of input attenuation,
f = to be close to the cut-off frequency, f.. However, it is not practical
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Zonim) <

impedance

Zot

=
Frequency

']
Attenuation
4+——— Pass band b‘i Harid —b-l

Figure 42.51

to make m very small, below 0.3 being very unusual. When m = 0.3,
fac &= 1.05f; (from equation (42.32)) and whenm = 0.6, f.o = 1.25f..
The effect of the value of m on the frequency of infinite attenuation is
shown in Figure 42.52 although the ideal curves shown would be modified
a little in practise by resistance losses.

A

Attenuation

>
f. 1.06f. 1.25f, Frequency

Figure 42.52

Problem 17. It i1s required to design a composite filter with a
cut-off frequency of 10 kHz, a frequency of infinite attenuation
11.8 kHz and nominal impedance of 600 £€2. Determine the compo-
nent values needed if the filter is to comprise a prototype T section,
an ‘m-derived” T section and two terminating ‘m-derived’ half-
sections.

Scanned with CamScanner



836 Electrical Circuit Theory and Technology

5.7 mH

0.0159 uF

10.13 mH

Ry =600 Q, f.=10kHzand f.. = 11.8 kHz. Since f. < f . the filter

1s a low-pass T section.

For the prototype:

From equation (42.6), capacitance,

1 1

C —— =
7f.Ry  w(10000)(600)

and from equation (42.7), inductance,

Ry 600

L= 27 = =0000)

= |19 mH

— (0.0531 uF,

Thus, from Figure 42.13(a), the series arm components are
(L/2) = (19/2) = 9.5 mH and the shunt arm component is 0.0531 pF.

For the ‘m-derived’® section:

From equation (42.33),

= PG ]y |- Gi) | =0

Thus from Figure 42.43(a), the series arm components are

= 5.04 mH

mL  (0.5309)(19)
2 2

and the shunt arm comprises mC = (0.5309)(0.0531) = 0.0282 pF in

series with

4dm 4(0.5309)

1 — m? 1 —0.5309°
( m)L:( ){19]:&.43:11}[

For the half-sections a value of m = (.6 is taken to obtain matching.

Thus from Figure 42.50,

e == —{U.ﬁ][19] = 5.7 mH

mC (0.6)(0.0531)

Half section

Figure 42.53

2 2 "2 Z
= 0.0159 pF
9.5 mH 9.5 mH 504mH 504mH 5.7 mH
0 O
b 0.0282 uF 0.0159 uF
0.0531 pF
' 6.43 mH 013 mH
- O O 0 © O
Prototype section *m-derived" section Half section

Scanned with CamScanner



Filter networks 837

{2 1 —0.62
_— T le=(——)19)=1013 mH
2m 2(0.6)

The complete filter 1s shown in Figure 42.53.

Further problems on practical composite filter sections may be found in
Section 42.10 following, problems 23 and 24, page 840

42.10 Further problems Low-pass filter sections

on filter networks 1 Determine the cut-off frequency and the nominal impedance of each

of the low-pass filter sections shown 1n Figure 42.54,
[(a) 1592 Hz; 5 k€2 (b) 9545 Hz; 600 2]

05H 05 H
LYV e YN — 2 A filter section is to have a characteristic impedance at zero frequency
of 500 €2 and a cut-off frequency of 1 kHz. Design (a) a low-pass
~To04 uF Y 4 sejcti{m filter, and (b) a low-pass m section filter to meet these
requirements.
o . —0 [(a) Each senies arm 79.6 mH, shunt arm (.637 uF
(a) (b) Series arm 159.2 mH, each shunt arm 0.318 pF]
3 Determine the value of capacitance required in the shunt arm of a
20 mH : : : : : :
low-pass T section if the inductance in each of the series arms is
40 mH and the cut-off frequency of the filter 1s 2.5 kHz.
N [0.203 uF]
224 27.8nF 4 The nominal impedance of a low-pass 7 section filter is 600 € and

o—=ab &0 its cut-off frequency i1s at 25 kHz. Determine (a) the value of the
(b) characteristic impedance of the section at a frequency of 20 kHz and

(b) the value of the characteristic impedance of the equivalent low-

Figure 42.54 pass T section filter. [(a) 1 k€2 (b) 360 2]

5 The nominal impedance of a low-pass mw section filter i1s 600 2. If
the capacitance in each of the shunt arms is (.1 pF determine the
inductance in the series arm. Make a sketch of the i1deal and the
practical attenuation/frequency charactenistic expected for such a filter
section. [72 mH]

6 A low-pass T section filter has a nominal impedance of 600 £ and
a cut-off frequency of 10 kHz. Determine the frequency at which
the characteristic impedance of the section i1s (a) zero, (b) 300 £,
(c) 600 £ [(a) 10 kHz (b) 8.66 kHz (c) 0]

High-pass filter sections

7 Determine for each of the high-pass filter sections shown 1n
Figure 42.55 (1) the cut-off frequency, and (1) the nominal
impedance.

[(a) (1) 22.51 kHz (i1) 14.14 k€2 (b) (1) 281.3 Hz (1) 1414 Q]
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At the end of this chapter you should be able to:

appreciate the purpose of a transmission line
define the transmission line primary constants R, L, C and G
calculate phase delay, wavelength and velocity of propagation
on a transmission line

e appreciate current and voltage relationships on a transmission
line

e define the transmission line secondary line constants Zy, y, «
and g

e calculate characteristic impedance and propagation coefficient
in terms of the primary line constants
understand and calculate distortion on transmission lines

understand wave reflection and calculate reflection coefficient
e understand standing waves and calculate standing wave ratio

44.1 Introduction A transmission line 1s a system of conductors connecting one point
to another and along which electromagnetic energy can be sent. Thus
telephone lines and power distribution lines are typical examples of
transmission lines; in electronics, however, the term usually implies a
line used for the transmission of radio-frequency (r.f.) energy such as that
from a radio transmitter to the antenna.

An important feature of a transmission line is that it should guide energy
from a source at the sending end to a load at the receiving end without
loss by radiation. One form of construction often used consists of two
similar conductors mounted close together at a constant separation. The
two conductors form the two sides of a balanced circuit and any radiation
from one of them is neutralized by that from the other. Such twin-wire
lines are used for carrying high r.f. power, for example, at transmitters.
The coaxial form of construction 1s commonly employed for low power
use, one conductor being in the form of a cylinder which surrounds the
other at its centre, and thus acts as a screen. Such cables are often used
to couple f.m. and television receivers to their antennas.

At frequencies greater than 1000 MHz, transmission lines are usually
in the form of a waveguide which may be regarded as coaxial lines
without the centre conductor, the energy being launched into the guide or
abstracted from it by probes or loops projecting into the guide.

44.2 Transmission line Let an a.c. generator be connected to the input terminals of a pair of
primary constants parallel conductors of infinite length. A sinusoidal wave will move along
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the line and a finite current will flow into the line. The variation of voltage
with distance along the line will resemble the vanation of applied voltage
with time. The moving wave, sinusoidal in this case, 1s called a voltage
travelling wave. As the wave moves along the line the capacitance of the
line is charged up and the moving charges cause magnetic energy to be
stored. Thus the propagation of such an electromagnetic wave constitutes
a flow of energy.

After sufficient ime the magnitude of the wave may be measured at any
point along the line. The line does not therefore appear to the generator
as an open circuit but presents a definite load Zy. If the sending-end
voltage 1s Vg and the sending end current is Is then Zy = Vg /I5. Thus
all of the energy is absorbed by the line and the line behaves in a similar
manner to the generator as would a single ‘lumped’ impedance of value
Z connected directly across the generator terminals.

There are four parameters associated with transmission lines, these
being resistance, inductance, capacitance and conductance.

(1) Resistance R is given by R = pl /A, where p 1s the resistivity of the
conductor material, A 1s the cross-sectional area of each conductor
and [ 1s the length of the conductor (for a two-wire system, [ repre-
sents twice the length of the line). Resistance 1s stated in ohms
per metre length of a line and represents the imperfection of the
conductor. A resistance stated in ohms per loop metre is a little
more specific since it takes into consideration the fact that there are
two conductors in a particular length of line.

(i1) Inductance L is due to the magnetic field surrounding the conduc-
tors of a transmission line when a current flows through them. The
inductance of an isolated twin line i1s considered in Section 40.7.
From equation (40.23), page 748, the inductance L 1s given by

__ Pofiy
T

L

a

1 D
{1 +1In —} henry/metre

where D is the distance between centres of the conductor and a is
the radius of each conductor. In most practical lines i, = 1. An
inductance stated in henrys per loop metre takes into consideration
the fact that there are two conductors in a particular length of line.

(i11) Capacitance C exists as a result of the electric field between conduc-
tors of a transmission line. The capacitance of an isolated twin line
1s considered in Section 40.3. From equation (40.14), page 736, the
capacitance between the two conductors 1s given by

ENE,

C = ———— farads/metre
In(D/a)

In most practical lines &, = 1

(iv) Conductance G is due to the insulation of the hne allowing some
current to leak from one conductor to the other. Conductance
is measured in siemens per metre length of line and represents
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the imperfection of the insulation. Another name for conductance
1s leakance.

Each of the four transmission line constants, R, L, C and G, known as
the primary constants, are uniformly distributed along the line.

From Chapter 41, when a symmetrical T-network is terminated in its
characteristic impedance Z, the input impedance of the network is also
equal to Zy. Similarly, if a number of identical T-sections are connected
in cascade, the input impedance of the network will also be equal to Z;.

A transmission line can be considered to consist of a network of a
very large number of cascaded T-sections each a very short length (8/) of
transmission line, as shown in Figure 44.1. This is an approximation of
the uniformly distributed line; the larger the number of lumped parameter
sections, the nearer it approaches the true distributed nature of the line.
When the generator Vg i1s connected, a current /g flows which divides
between that flowing through the leakage conductance G, which is lost,
and that which progressively charges each capacitor C and which sets up
the voltage travelling wave moving along the transmission line. The loss

or attenuation in the line is caused by both the conductance G and the
series resistance R.

L o st ki ks i Ga La £a

Iz

—?—l Hﬁﬂﬂm—a—mm__ﬁ-fﬁ_'_—”_—]_&_ -y
]
ICD . E-I--LJ 3451 c.:-.-== Gt Ve Losad

2 I

Figure 44.1

44.3 Phase delay, Each section of that shown in Figure 44.1 is simply a low-pass filter
wavelength and velocity of possessing losses R and G. If losses are neglected, and R and G are

propagation removed, the circuit simplifies and the infinite line reduces to a repetitive
T-section low-pass filter network as shown in Figure 44.2. Let a generator
be connected to the line as shown and let the voltage be nising to a
maximum positive value just at the instant when the line is connected
to it. A current /5 flows through inductance L; into capacitor C,. The
capacitor charges and a voltage develops across it. The voltage sends a
current through inductance L] and L, into capacitor C,. The capacitor

) L L Ly Ly La Ly
W
TC> ° Ic- Tc:p -[53
Figure 44.2
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charges and the voltage developed across it sends a current through L,
and L3 into C3, and so on. Thus all capacitors will in turn charge up
to the maximum input voltage. When the generator voltage falls, each
capacitor 1s charged in turn in opposite polarity, and as before the input
charge is progressively passed along to the next capacitor. In this manner
voltage and current waves travel along the line together and depend on
each other.

The process outlined above takes time; for example, by the time capac-
itor C5 has reached its maximum voltage, the generator input may be at
zero or moving towards its minimum value. There will therefore be a
time, and thus a phase difference between the generator input voltage and
the voltage at any point on the line.

Phase delay

Since the line shown in Figure 44.2 is a ladder network of low-pass T-
section filters, it is shown in equation (42.27), page 820, that the phase
delay, B, 1s given by:

B = @./(LC) radians/metre (44.1)

where L and C are the inductance and capacitance per metre of the line.

Wavelength

The wavelength A on a line i1s the distance between a given point and
the next point along the line at which the voltage is the same phase, the
initial point leading the latter point by 2 radian. Since in one wavelength
a phase change of 2x radians occurs, the phase change per metre 1s 27 /A.
Hence, phase change per metre, § = 2x/A

2
or wavelength, A = Fﬂ metres (44.2)

Velocity of propagation

The welocity of propagation, u, 1s given by u = fAi, where f is the
frequency and A the wavelength. Hence

T e MR (44.3)

BB

The velocity of propagation of free space i1s the same as that of light,
i.e., approximately 300 x 10° m/s. The velocity of electrical energy along
a line 1s always less than the velocity in free space. The wavelength A
of radiation in free space is given by A = ¢/ f where ¢ 1s the velocity of
light. Since the velocity along a line 1s always less than ¢, the wavelength

Scanned with CamScanner



Transmission lines 873

corresponding to any particular frequency is always shorter on the line
than it would be in free space.

Problem 1. A parallel-wire air-spaced transmission line operating
at 1910 Hz has a phase shift of 0.05 rad/km. Determine (a) the
wavelength on the line, and (b) the speed of transmission of a
signal.

(a) From equation (44.2), wavelength A = 2x/8 = 2x/0.05
= 125.7 km

(b) From equation (44.3), speed of transmission,

u= fi=(1910)(125.7) = 240 x 10" km/s or 240 x 10° m/s

Problem 2. A transmission line has an inductance of 4 mH/loop
km and a capacitance of 0.004 pF/km. Determine, for a frequency
of operation of 1 kHz, (a) the phase delay, (b) the wavelength on
the line, and (c) the velocity of propagation (in metres per second)
of the signal.

(a) From equation (44.1), phase delay,

B = w{/(LC) = (271000)/[(4 x 1073)(0.004 x 107°)]
— 0.025 rad/km

(b) From equation (44.2), wavelength A = 2x/8 = 2x/0.025
= 251 km

(¢) From equation (44.3), velocity of propagation,

u= fr=(1000)(251) km/s = 251 x 10° m/s

Further problems on phase delay, wavelength and velocity of propagation
may be found in Section 44.9, problems 1 to 3, page 897.

444 Current and vﬂltage Figure 44.3 shows a voltage source Vg applied to the input terminals of
relationships  an infinite line, or a line terminated in its characteristic impedance, such

that a current /s flows into the line. At a point, say, 1 km down the line

let the current be /. The current /; will not have the same magnitude as

I5 because of line attenuation; also I; will lag I'; by some angle . The

ratio Ig/I; is therefore a phasor quantity. Let the current a further 1 km
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down the line be 72, and so on, as shown 1n Figure 44.3. Each unit length

: k I i‘; : I"l I 'rd- :
: 1 = =i i of line can be treated as a section of a repetitive network, as explained in
= I ! i l Section 44.2. The attenuation is in the form of a logarithmic decay and
I I " ]
| i i |
JO | | i Is L1 L
: | i | D —— i e .
| | | | L L I
| ' ! |
I I I I = & a & -
T e e e where y is the propagation constant, first introduced in Section 42.7,

page 815. y has no unit.

Figure 44.3 The propagation constant i1s a complex quantity given by y = a + jj,
where o 1s the attenuation constant, whose unit is the neper, and § is
the phase shift coefficient, whose unit 1s the radian. For n such 1 km
sections, Ig/Ir = €"V where I 1s the current at the receiving end.

I

Hence = = "@HP) — gratinp) _ e"“inp
Ip
from which, | Ig = Ise™Y =Ise™%/—np (44.4)

In equation (44.4), the attenuation on the line i1s given by na nepers and
the phase shift is n g radians.

At all points along an infinite line, the ratio of voltage to current 1s Z;,
the characteristic impedance. Thus from equation (44.4) it follows that:

receiving end voltage,| Vg = Vse ™Y = Vge™L—np (44.5)

Zy, v, o, and f are referred to as the secondary line constants or coef-
ficients.

Problem 3. When operating at a frequency of 2 kHz, a cable has
an attenuation of (.25 Np/km and a phase shift of 0.20 rad/km. If a
5 V rms signal is applied at the sending end, determine the voltage
at a point 10 km down the line, assuming that the termination is
equal to the characteristic impedance of the line.

Let Vi be the voltage at a point n km from the sending end, then from
equation (44.5), Vg = Ve ™ = Ve " L—nf

Since o = 0.25 Np/km, 8 = 0.20 rad/km, Vs = 5 Vand n = 10 km, then

Ve = (5)e 1905/ 10)(0.20) = 5e > £L-2.0V

=0.41/—2.0 V or 0.4123 VM ¥%2¥ rad or 114.6

Thus the voltage 10 km down the line is 0.41 V rms lagging the sending
end voltage o ¢
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Problem 4. A transmission line 5 km long has a characteristic
impedance of B00L—25° €2. At a particular frequency, the atten-
uation coefficient of the line is (0.5 Np/km and the phase shift
coefficient 1s 0.25 rad/km. Determine the magnitude and phase
of the current at the receiving end, if the sending end voltage is
2.040° V rm.s.

The receiving end voltage (from equation (44.5)) 1s given by:

Vie=Vse ™ = Vse "/—np = (2.0£0°)e~ P /—(5)(0.25)

—=20e 29/—1.25 =0.1642/—71.62° V

Receiving end current,

Ve 0.1642£—71.62°

= =205 x 107 (=71.62° — (=25°)A
Zo 3007 —25° x ': i)

Ig =

= 0.205/—46.62° mA

Problem 5. The voltages at the input and at the output of a trans-
mission line properly terminated in its characteristic impedance are
8.0 V and 2.0 V rms respectively. Determine the output voltage if
the length of the line i1s doubled.

The receiving-end voltage Vi 1s given by Vi = Ve "7,
Hence 2.0 = 8.0¢7"", from which, e™"¥ = 2.0/8.0 = 0.25
[f the line is doubled in length, then
Ve = 8.0e™2" = 8.0(e™"")?
= 8.0(0.25)* =050 V

Further problems on current and voltage relationships may be found in
Section 44.9, problems 4 to 6, page 897.

44.5 Characteristic Characteristic impedance
impedance and
propagation coefficient in
terms of the primary
constants

At all points along an infinite line, the ratio of voltage to current is
called the characteristic impedance Z;. The value of Z; 1s independent
of the length of the line; it merely describes a property of a line that is a
function of the physical construction of the line. Since a short length of
line may be considered as a ladder of identical low-pass filter sections,
the characteristic impedance may be determined from equation (41.2),
page 760, i.e.,

Zo = V(ZocZsc) (44.06)
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since the open-circuit impedance Zpec and the short-circuit impedance
Zg¢c may be easily measured.

Problem 6. At a frequency of 1.5 kHz the open-circuit impedance
of a length of transmission line is 800£—50° €2 and the short-circuit
impedance 1s 413/—20° 2. Determine the characteristic impedance
of the line at this frequency.

From equation (44.6),
characteristic impedance Z, = /(ZocZsc)
= /[(800£—50°)(413£-20°)]
= J(330400£—-70°) = 575/.—-35° Q

by de Moivre’s theorem.

The characteristic impedance of a transmission line may also be
LA +jul )51 LA+ feal J81 expressed in terms of the primary constants, R, L, G and C. Measurements
4 of the primary constants may be obtained for a particular line and
manufacturers usually state them for a standard length.
Let a very short length of line 4/ metres be as shown in Figure 44.4
comprising a single T-section. Each series arm impedance 1is
Z, = =(R + jwL)dl ohms, and the shunt arm impedance is

L. ™ ~ ™,

N ES TR B e mm

T ca

1 1
Y, (G + jeC)sl

Z,=

T

Figure 44.4 . : . ;
[1.e., from Chapter 25, the total admittance Y5 is the sum of the admittance

of the two parallel arms, 1.e., in this case, the sum of

Gsl and ( 511

1/(joC }I)
From equation (41.1), page 760, the characteristic impedance Z; of a T-
section having in each series arm an impedance Z; and a shunt arm

impedance Z» is given by: Zo = V(Z12 + 2Z,Z>)
Hence the characteristic impedance of the section shown in Figure 44.4 is

= gtk + o] +2 [+ o] |
Zﬂ_\.'{lz(ﬁi_l_fm”m +2 Z{R—I—_fm,[.]sﬂ G 1 joC)il

The term Z,” involves 1% and, since 8/ is a very short length of line, 1°
1s negligible. Hence

R +jeL
g o VIO e 44.7
0 \/G YjaC ety

Scanned with CamScanner



Transmission lines 877

e
]

Figure 44.5

If losses R and (G are neglected, then

Zy = /(L/C) ohms (44.8)

Problem 7. A transmission line has the following primary constants:
resistance R = 15 Q/loop km, inductance L = 3.4 mH/loop km,
conductance G = 3 pS/km and capacitance C = 10 nF/km. Deter-
mine the characteristic impedance of the line when the frequency is
2 kHz.

From equation (44.7),

o \/R + jwL
characteristic impedance Zy = (| ———— ohms
G+ jwC
R+ joL = 15 + j(2w2000)(3.4 x 107%)
= (154 j42.73)Q2 = 45.29/70.66° Q
G + joC =3 x 107% + j(272000)(10 x 10~°)

= (34 j125.66)107° S = 125.7 x 107°/88.63° S

| 45.29/70.66"

\/ 125.7 x 10-6288.63°
1.e., characteristic impedance, Z; = 600/—8.99° Q

= /[0.360 x 10°/—17.97°] ©

Hence Zy =

Propagation coefficient

Figure 44.5 shows a T-section with the series arm impedances each
expressed as Z4/2 ohms per unit length and the shunt impedance as
Z i ohms per unit length. The p.d. between points P and Q 1s given by:

YA
Vepo=U,—1:)Zg =15 (T +Zu)

: I>Z 4
1.€., W — Iy =

— +1Zo
Zy
Hence [WZgp= 1> ZB“"?_'_ZU)
I Zp+(Zy/2)+ Z
from which — = —2 Ea/2) + 20
15 2
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From equation (41.1), page 760, Zy = /(Z,> + 2Z,Z). In Figure 44.5,

2 EZ{.H'IE and Lr=2Lp
| Z 2

Thus zﬂ=\/ [({;)Zz@:) Zs

I Zs+ (Za)) + 1\ @aZs+ @4319)

Hence
5 T
_Zs, @2, V(ZaZs + (Z42/4)
a ZE ZB ZH
1 /Za | [ 2425 (Za2/4)
A O ey e
T3 (ZH) +VI ( Zy* - Zy* )
I 1/Z i 172N P
: 1 A A AY
... T N i i B Wi (i 44.9
- 7 +2(zﬂj+ zﬁ+4(23) e

From Section 444, I,/I, = ¥, where y 1s the propagation coefficient.

Also, from the binomial theorem:
nin—1)
2!

{Iﬂ—lbz s

1/2

Thus

&, 1Y
Zs 4 \Za
Z A2 1 7 N2 7 N2
Zn 72 d:\ %
I i $ 2
Ay F=]_|__ il
L~ ¢ 2(23)_'_
e s =1+ (2) " +1(2) 1 (2) "
earranging gives: et = — ] | K e
EREE Zp 2 \Zg 8 \Zp
let impedance Z4 = Z4§l, where Z =R + jwL and Zg = 1/(Yél), where
Y =G+ jwC

@+ b)" =a"+na" 'b+

Hence, from equation (44.9),
A 1/2 1 7 3/2
(_“‘) = (i) Lowds
2 Ly 8 \Zp
Let length XY in Figure 44.5 be a very short length of line 4/ and
Then
s 32

o (2 )‘f-+1 ZEI)+1(ZH Jf“-+
<= (1;1’53 2(1;1’5: 8 U}’EE)

2 1 g 1 32
=1 4{Z¥5H)'2 4 E{zras—j 4 E{ZY&F}’*’- s

Scanned with CamScanner



Transmission lines 879

) 1 y 1 .
=14 (ZY)'%581 + 5(21’](5”- i E(zrw’?{as;ﬁ S

= 1+ (ZY)4l,

if (8/)%, (81)° and higher powers are considered as negligible.
e* may be expressed as a series:

' I _Il _IH
R e e o

Comparison with " = 14 (ZY)/25] shows that 8] = (ZY)'/?4] ie.,
¥ = J/(ZY). Thus

propagation coefficient, | y = /[(R +joL)(G +joC)] (44.10)

The unit of y is /(Q)(S), i.e., /[(2)(1/2)]. thus y is dimensionless, as
expected, since Iy /I>» = €Y, from which y = In(f,/I1), 1.e., a ratio of two
currents. For a lossless line, R = G = (0 and

y=+V(jeL)(jeC) = jo(LC) (44.11)

Equations (44.7) and (44.10) are used to determine the characteristic
impedance Zp and propagation coefficient ¥ of a transmission line in
terms of the primary constants R, L, G and C. When R =G =0, ie.,
losses are neglected, equations (44.8) and (44.11) are used to determine
2y and V.

Problem 8. A transmission line having neglgible losses has
primary line constants of inductance L = (.5 mH/loop km and
capacitance C = (.12 pF/km. Determine, at an operating frequency
of 400 kHz, (a) the characteristic impedance, (b) the propagation
coefficient, (c) the wavelength on the line, and (d) the velocity of
propagation, in metres per second, of a signal.

(a) Since the line is lossfree, from equation (44.8), the characternistic
impedance Zp 1s given by

/L [0.5x 1073

Zo=1]= =4/ — 64.55 Q
Ve Vozx1o-s

(b) From equation (44.11), for a lossfree line, the propagation coefficient
¥ 1s given by

y = jw/(LC) = j(2m400 x 10°)4/[(0.5 x 1073)(0.12 x 107%)]
= j19.47 or 0 + j19.47

Scanned with CamScanner



880 Electrical Circuit Theory and Technology

Since y = a + jj, the attenuation coefficient @ = 0 and the phase-
shift coefficient, § = 19.47 rad/km.

2 27
(¢) From equation (44.2), wavelength A = FH = To.47

= 0323 km or 323 m

(d) From equation (44.3), velocity of propagation u = fA

— (400 x 10°)(323) = 129 x 10° m/s.

Problem 9. At a frequency of 1 kHz the primary constants of a
transmission line are resistance R = 25 £/loop km, inductance L =
5 mH/loop km, capacitance C = 0.04 pF/km and conductance G =
80 uS/km. Determine for the line (a) the characteristic impedance,
(b) the propagation coefficient, (c) the attenuation coefficient and
(d) the phase-shift coefficient.

(a) From equation (44.7),

ST B II'I R + jwL
characteristic impedance Z; = fo—— ohms
\ G+ joC

R+ jowL =25+ j(271000)(5 x 1073) = (25 + j31.42)

= 40.15£51.49° Q
G + jwC = 80 x 107° + j(27x1000)(0.04 x 107%)

= (80 + j251.33)107° =263.76 x 107°.72.34° §
Thus characteristic impedance

| 40.15/51.49°
ZL‘} = I|I =
\/ 263.76 x 10-6/72.34°

=390.2/-1043 Q

(b) From equation (44.10), propagation coefficient
¥ = VIR + joL)(G + jeC)]
= 1/[(40.15/51.49°)(263.76 x 1076/72.34°)]

= /(0.01059£123.83°) = 0.1029/61.92°

(¢) y=a+ jB=0.1029(cos61.92° + jsin61.92°),
ie., y = 0.0484 4 j0.0908

Thus the attenuation coefficient, &« = 0.0484 nepers/km
(d) The phase shift coefficient, 8 = 0.0908 rad/km

Scanned with CamScanner



Transmission lines 881

Problem 10. An open wire line 1s 300 km long and is terminated
in its characteristic impedance. At the sending end is a
generator having an open-circuit em.f. of 10.0 V, an internal
impedance of (400 4+ jO)Q2 and a frequency of 1 kHz. If the line
primary constants are R = 8 Q/loop km, L = 3 mH/loop km, C =
7500 pF/km and G = (.25 pS/km, determine (a) the charactenistic
impedance, (b) the propagation coefficient, (c) the attenuation
and phase-shift coefficients, (d) the sending-end current, (e) the
receiving-end current, (f) the wavelength on the line, and (g) the
speed of transmission of signal.

(a) From equation (44.7),

L. R+ jowL
characteristic impedance, Zy = —“I ohms
G+ joC

R+ joL = 8 + j(271000)(3 x 1077)
= 8 + j6rr = 20.48£67.0° Q

G + jwC = 0.25 x 1075 + j(271000)(7500 x 10~12)
— (0.25 4 j47.12)1075 = 47.12 x 10°6/89.70° S

Hence characteristic impedance

[ 20.48.67.0°

Zo = = 659.3/—11.35° Q
* 7\ 47.12 x 10-5£89.70°

(b) From equation (44.10), propagation coefficient
¥y = VIR + joL)(G + juC)] =
VI(20.48£67.0°)(47.12 x 107°£89.70°)] = 0.03106.78.35°

(¢) y=a+ jB=0.03106(cos78.35° + jsin78.35%)

= 0.00627 + ;0.03042

Hence the attenuation coefficient, @ = 0.00627 Np/km and the
phase shift coefficient, § = 0.03042 rad/km

Is (d) With reference to Figure 44.6, since the line 1s matched, 1.e., termi-
nated in 1ts characteristic impedance, Vg /Iy = Z;. Also

;=100 V T Vs = Vg — IsZg = 10.0 — I5(400 + jO)
Vs 10.0 — 400/

Thus 7 g= —
Zs = (400 +j0)0 Zy Ly

Rearranging gives: I¢Zy = 10.0 — 400 I, from which,

Figure 44.6 Is(Zy + 400) = 10.0
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44.6 Distortion on
transmission lines

(e)

(f)

(2)

Thus the sending-end current,

o 100 10.0

5T Zo+400  659.3Z—11.35° + 400
B 10.0 B 10.0
~ 646.41 — j129.75 4+ 400 1054.4.-7.07°
= 9.484/7.07° mA

From equation (44.4), the receiving-end current,
Ip =Ise™ =Ise " /—np
= (9.484£7.07%)e” COOOD /1 _(300)(0.03042)
= 9.484/7.07°¢#¥1/—9.13 rad
= 1.446/—516° mA = 1.446/—156" mA

From equation (44.2),

2;
wavelength, A = —  —2065 km

B~ 0.03042
From equation (44.3),

speed of transmission, u = fA = (1000)(206.5)
= 206.5 x 10° km/s = 206.5 x 10° m/s

Further problems on the characteristic impedance and the propagation
coefficient in terms of the primary constants may be found in Section 44.9,
problems 7 to 11, page 898.

If the waveform at the receiving end of a transmission line i1s not the
same shape as the waveform at the sending end, distortion is said to
have occurred. The three main causes of distortion on transmission lines
are as follows.

(1)

The characteristic impedance Zg of a line varies with the operating

frequency, 1.e., from equation (44.7),

The terminating impedance of the line may not vary with frequency

in the same manner.

In the above equation for Z, if the frequency is very low, w 1s low
and Z, =~ ,/(R/G). If the frequency is very high, then wL > R,
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Z wC > G and Z, =~ J(L/C). A graph showing the variation of Z
J18) with frequency f is shown in Figure 44.7.
If the characteristic impedance is to be constant throughout the

entire operating frequency range then the following condition is
required: /(L/C) = \/(R/G), i.e., L/C = R/G, from which

) —

0 7 LG = CR (44.12)
Figure 44.7

Thus, in a transmission line, if LG = CR it 1s possible to provide a
termination equal to the characteristic impedance Z; at all frequen-
cies.

(11) The attenuation of a line varies with the operating frequency (since
¥y = J/[(R+ joL)(G + joC)], from equation (44.10)), thus waves
of differing frequencies and component frequencies of complex
waves are attenuated by different amounts.

From the above equation for the propagation coefficient:
y? = (R+ joL)(G + jeC)
= RG + jo(LG + CR) — ’LC

If LG=CR=ux, then LG+ CR=2x and LG4+ CR may be
written as 2v/x2, i.e., LG + CR may be written as 2./[(LG)(CR)].

Thus y* = RG + jo(2J[(LG)(CR)]) — &’LC

= [V(RG) + jw/(LC)]?
and ¥ = (RG) + jw/(LC)

Since

y = a + jp. attenuation coefficient, | o = ./(RG) (44.13)

and phase shift coefficient, | 8 = w./(LC) (44.14)

Thus, in a transmission line, if LG = CR, a = /(RG), ie., the
attenuation coefficient is independent of frequency and all frequen-
cies are equally attenuated.

(1) The delay time, or the time of propagation, and thus the velocity of
propagation, varies with frequency and therefore waves of different
frequencies arrive at the termination with differing delays. From
equation (44.14), the phase-shift coefficient, f = w/(LC) when
EGE=1CR.

I, @ 1
Velocity of propagation, u = — = — 44.15
Y Ol propag B mJ{LC] J(IO) ( )

Thus, in a transmission line, if LG = CR, the velocity of propaga-
tion, and hence the time delay, is independent of frequency.
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From the above it appears that the condition LG = CR 1s appropriate for
the design of a transmission line, since under this condition no distor-
tion 1s introduced. This means that the signal at the receiving end 1s the
same as the sending-end signal except that it 1s reduced in amplitude and
delayed by a fixed time. Also, with no distortion, the attenuation on the
line 1s a minimum. In practice, however, R/L >> G/C. The inductance is
usually low and the capacitance is large and not easily reduced. Thus if
the condition LG = CR is to be achieved in practice, either L or G must
be increased since neither C or R can really be altered. It is undesirable
to increase G since the attenuation and power losses increase. Thus the
inductance L is the quantity that needs to be increased and such an arti-
ficial increase in the line inductance is called loading. This 1s achieved
either by inserting inductance coils at intervals along the transmission
line — this being called ‘lumped loading’ — or by wrapping the conduc-
tors with a high-permeability metal tape — this being called ‘continuous
loading’.

Problem 11. An underground cable has the following primary
constants: resistance R = 10 Q/loop km, inductance L = 1.5 mH/
loop km, conductance G = 1.2 uS/km and capacitance C =
0.06 pF/km. Determine by how much the inductance should be
increased to satisfy the condition for minimum distortion,

From equation (44.12), the condition for minimum distortion is given by
LG = CR, from which,

CR _ (0.06 x 107)(10)
G 1.2 x 10~

inductance L = = (0.5 H or 500 mH

Thus the inductance should be increased by (500 — 1.5) mH, i.e.,
498.5 mH per loop km, for minimum distortion.

Problem 12. A cable has the following primary constants:
resistance R = 80 Q/loop km, conductance, G = 2 uS/km, and
capacitance C = 5 nF/km. Determine, for minimum distortion at
a frequency of 1.5 kHz (a) the value of inductance per loop
kilometre required, (b) the propagation coefficient, (¢) the velocity
of propagation of signal, and (d) the wavelength on the line

(a) From equation (44.12), for mimmum distortion, LG = CR, from
which, inductance per loop kilometre,

CR (5x 10~°)(R0)

= — 0.20 H or 200 mH
G (2 % 10-5) or

L =

(b) From equation (44.13), attenuation coefficient,

a = (RG) = /[(80)(2 x 107%)] = 0.0126 Np/km
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and from equation (44.14), phase shift coefficient,

B = w/(LC) = (2m1500)/[(0.20)(5 x 107%)] = 0.2980 rad/km
Hence the propagation coefficient,

y=a+ jf = (00126 + j0.2980) or 0.2983/87.58°

(¢) From equation (44.15), velocity of propagation,

| |
JILC)  V1(0.2)(5 x 107%)]
= 31620 km/s or 31.62 x 10° m/s

31.62 x 10°
(d) Wavelength, A = ; ] 15;{} m = 21.08 km

Further problems on distortion on transmission lines may be found in

Section 44.9, problems 12 and 13, page 899.

44.7 Wave reflection and In earlier sections of this chapter it was assumed that the transmission line
the reflection coefficient had been properly terminated in its characteristic impedance or regarded
as an infinite line. In practice, of course, all lines have a definite length
and often the terminating impedance does not have the same value as the
characteristic impedance of the line. When this is the case, the transmis-
sion line 1s said to have a ‘mismatched load’.

The forward-travelling wave moving from the source to the load is
called the incident wave or the sending-end wave. With a mismatched
load the termination will absorb only a part of the energy of the incident
wave, the remainder being forced to return back along the line toward the
source. This latter wave 1s called the reflected wave.

Electrical energy is transmitted by a transmission line; when such
energy arrives at a termination that has a value different from the char-
acteristic impedance, it experiences a sudden change in the impedance
of the medium. When this occurs, some reflection of incident energy
occurs and the reflected energy 1s lost to the receiving load. (Reflections
commonly occur in nature when a change of transmission medium occurs;
for example, sound waves are reflected at a wall, which can produce
echoes, and light rays are reflected by mirrors.)

If a transmission line is terminated in its characteristic impedance,
no reflection occurs; if terminated in an open circuit or a short circuit,
total reflection occurs, i.e., the whole of the incident wave reflects along
the line. Between these extreme possibilities, all degrees of reflection
are possible.
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Open-circuited termination

If a length of transmission line is open-circuited at the termination, no
current can flow in it and thus no power can be absorbed by the termi-
nation. This condition i1s achieved if a current is imagined to be reflected
from the termination, the reflected current having the same magnitude
as the incident wave but with a phase difference of 180°. Also, since
no power i1s absorbed at the termination (it is all returned back along
the line), the reflected voltage wave at the termination must be equal to
the incident wave. Thus the voltage at the termination must be doubled
by the open circuit. The resultant current (and voltage) at any point on
the transmission line and at any instant of time is given by the sum of
the currents (and voltages) due to the incident and reflected waves (see
Section 44.8).

Short-circuit termination

[f the termination of a transmission line 1s short-circuited, the impedance
1s zero, and hence the voltage developed across it must be zero. As with
the open-circuit condition, no power is absorbed by the termination. To
obtain zero voltage at the termination, the reflected voltage wave must
be equal in amplitude but opposite in phase (1.e., 180° phase difference)
to the incident wave. Since no power 1s absorbed, the reflected current
wave at the termination must be equal to the incident current wave and
thus the current at the end of the line must be doubled at the short circuit.
As with the open-circuited case, the resultant voltage (and current) at any
point on the line and at any instant of time 1s given by the sum of the
voltages (and currents) due to the incident and reflected waves.

Energy associated with a travelling wave

A travelling wave on a transmission line may be thought of as being made
up of electric and magnetic components. Energy is stored in the magnetic
field due to the current (energy = 1LI°> —see page 751) and energy is

stored in the electric field due to the voltage (energy = %Cvl—see
page 738). It is the continual interchange of energy between the magnetic
and electric fields, and vice versa, that causes the transmission of the total
electromagnetic energy along the transmission line.

When a wave reaches an open-circuited termination the magnetic field
collapses since the current I is zero. Energy cannot be lost, but it can
change form. In this case it 1s converted into electrical energy, adding
to that already caused by the existing electric field. The voltage at the
termination consequently doubles and this increased voltage starts the
movement of a reflected wave back along the line. A magnetic field will
be set up by this movement and the total energy of the reflected wave
will again be shared between the magnetic and electric field components.

When a wave meets a short-circuited termination, the electric field
collapses and its energy changes form to the magnetic energy. This results
in a doubling of the current.
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; ) Reflection coefficient
" tialey 2 G 2
I SERCl s ! Let a generator having impedance Zj (this being equal to the characteristic
T ! impedance of the line) be connected to the input terminals of a transmis-
) ! sion line which is terminated in an impedance Zy, where Z; # Zg, as
y > shown in Figure 44.8. The sending-end or incident current /; flowing
r A from the source generator flows along the line and, until it arrives at the
Z; termination Z behaves as though the line were infinitely long or properly
terminated in its characteristic impedance, Zj.
‘‘‘‘‘ - The incident voltage V; shown in Figure 44.8 is given by:
Figure 44.8 V. =1.Z, (44.12)
: Vi
from which, [, = — (44.13)
Zy

At the termination, the conditions must be such that:

total voltage

total current

Since Zi # Z;, part of the incident wave will be reflected back along the
line from the load to the source. Let the reflected voltage be V, and the
reflected current be I,. Then

Ve=—-I,7p (44.14)

r

from which, I, = — — (44.15)
Zy

(Note the minus sign, since the reflected voltage and current waveforms
travel in the opposite direction to the incident waveforms.)

Thus, at the termination,

total voltage V;+V,
total current  I; + I,

Ly —dydyp
el

from equations (44.12) and (44.14)

; Z'D”rr' _Ir]
1.e., Lg =
(I; +1,)

Hence Zg(l;+1.)=2Zo;—1;)

Zrli + Zgl, = Zpl; — Zyl,
Lol, + Zgl, = Zol; — ZLl;

I Lo+ Zg)=1i(Zo — Zg)

I Zo— 7
from which — = ot M
I Lo+ 2,
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The ratio of the reflected current to the incident current is called the
reflection coefficient and i1s often given the symbol p, 1.e.,

I, Ly —Zy

T

4416
1, ( )

By similar reasoning to above an expression for the ratio of the reflected
to the incident voltage may be obtained. From above,

Vi ¥V, V4V,

ZR e — |
I, +1, (Vi/Zo) — (V,./Zp)
from equations (44.13) and (44.15),
Vi+V
1.€., ZR = ot
(Vi— V:)/Zo
Zg
Hence —(V; -V, )=V, 4+ V,
£y
Z L
from which, —V, — =Xy =v,+V,
Zy Zy
A Z
Then CobeVeeVi 42
Zy Zy
z-1)=v(+3)
and Vi|l—-1|=V,{1+4+ —
' (Z{} * Ay
Lp— 2 Lo+ 2
Hence Vi (R—u) =¥y (u)
Zo Lo
Vv Lp— 2 Zo— 2
from which — = ———2 — _ (u) (44.17)
V; Lo+ £g Zo+Zpg
H L L (44.18)
ence| — =—— =— .
TSN

Thus the ratio of the reflected to the incident voltage has the same magni-
tude as the ratio of reflected to incident current, but 1s of opposite sign.
From equations (44.16) and (44.17) it is seen that when Zg = Zyp, p =0
and there is no reflection.

Problem 13. A cable which has a characteristic impedance of
75 € 1s terminated in a 250 £ resistive load. Assuming that the
cable has negligible losses and the voltage measured across the
terminating load 1s 10 V, calculate the value of (a) the reflection
coefficient for the hne, (b) the incident current, (c) the incident
voltage, (d) the reflected current, and (e) the reflected voltage.
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1 Wp-10 ¥

Figure 44.9

|:|a==25liln

(a)

(b)

(c)

(d)

From equation (44.16),

Zo—ZLpg 75 — 250 —175
reflection coefficient, p = = -
0= et Ze 154250 325

= —0.538

The circuit diagram 1s shown in Figure 44.9. Current flowing in the
terminating load,

Ve 10
g (04N
R Ze 250

However, current Iy = I; + I,. From equation (44.16), I, = pl;

Thus Ig =1; 4 pl; = I;(1 + p)

from which incident current, I; = Ix
(14 p)
0.04
= = (.0866 A or 86.6 mA
1 4+ (—0.538)

From equation (44.12),
incident voltage, V; = I,Z;, = (0.0866)(75) =650V
Since Ip=1;+1,
reflected current, I, = I, — I, = 0.04 — (0.0866

= —0.0466 A or —46.6 mA
From equation (44.14),

reflected voltage, V, = —I1,Z; = —(—0.0466)(75) =350V

Problem 14. A long transmission line has a characteristic
impedance of (500 — j40)Q2 and is terminated in an impedance of
(a) (500 + j40)Q2 and (b) (600 + ;j20)Q. Determine the magnitude
of the reflection coefficient in each case.

(a) From equation (44.16), reflection coefficient,

Zo—Zpg
N Lo+ Ly

fe

When Z; = (500 — j40)Q and Zg = (500 + j40)2

(500 — j40) — (500 + j40)  —;j80
(500 — j40) + (500 + j40) 1000

p — —j0.08

Hence the magnitude of the reflection coefficient, |p| = 0.08
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44.8 Standing waves and
the standing wave ratio

(b) When Z; = (500 — j40)Q2 and Zx = (600 + j20)$2
(500 — j40) — (600 + j20) —100 — j60
~ (500 — j40) + (600 + j20) _ 1100 — j20
116.62. — 149.04°
1100.182—1.04°
— 0.106/—148°

fe

Hence the magnitude of the reflection coefficient, |p| = 0.106

Problem 15. A loss-free transmission line has a characteristic
impedance of 500£0° € and is connected to an aerial of impedance
(320 + j240)22. Determine (a) the magnitude of the ratio of the
reflected to the incident voltage wave, and (b) the incident voltage
if the reflected voltage 1s 20/35° V

(a) From equation (44.17), the ratio of the reflected to the incident
voltage 1s given by:
V., Zp—2Zy
Vi Zp+Z,

where Z; 1s the characteristic impedance 500/0° € and Zj 1s the
terminating impedance (320 4+ j240)%2.
V, (320 + j240) — 500£0°  —180 + ;240
V,  500L0° + (320 + j240) 820 + ;240
300£126.87°
T 854.4£16.31°
Hence the magnitude of the ratio V, : V; 1s 0.351

(b) Since V,/V; = 0.351£110.56°,

Thus

= 0.351£110.56°

Ve
0.351£110.56°

Thus, when V, = 20/35° V,

_20435°
~0.351£110.56°

incident voltage, V; =

= 57.04-75.56" V

i

Further problems on the reflection coefficient may be found in Section 44.9,

problems 14 to 16, page 899.

Consider a lossfree transmission line open-circuited at its termination. An
incident current waveform is completely reflected at the termination, and,
as stated in Section 44.7, the reflected current is of the same magnitude
as the incident current but is 180° out of phase. Figure 44.10(a) shows
the incident and reflected current waveforms drawn separately (shown as
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I; moving to the right and I, moving to the left respectively) at a ime
t = 0, with I; = 0 and decreasing at the termination.

The resultant of the two waves 1s obtained by adding them at inter-
vals. In this case the resultant is seen to be zero. Figures 44.10(b) and
(c) show the incident and reflected waves drawn separately as times
t =T /8 seconds and t = T /4, where T 1s the periodic time of the signal.
Again, the resultant is obtained by adding the incident and reflected wave-
forms at intervals. Figures 44.10(d) to (h) show the incident and reflected
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Figure 44.10 Current waveforms on an open-circuited
transmission line
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current waveforms plotted on the same axis, together with their resultant
waveform, at times + = 37 /8 to r = 7T /8 at intervals of T /8.

If the resultant waveforms shown in Figures 44.10(a) to (g) are super-
imposed one upon the other, Figure 44.11 results. (Note that the scale has
been increased for clarity.) The waveforms show clearly that waveform
(a) moves to (b) after T /8, then to (c) after a further period of T /8, then
to (d), (e). (f), (g) and (h) at intervals of T /8. It is noted that at any partic-
ular point the current varies sinusoidally with time, but the amplitude of
oscillation is different at different points on the line.

Whenever two waves of the same frequency and amplitude travelling in
opposite directions are superimposed on each other as above, interference
takes place between the two waves and a standing or stationary wave i1s
produced. The points at which the current 1s always zero are called nodes
(labelled N in Figure 44.11). The standing wave does not progress to the
left or right and the nodes do not oscillate. Those points on the wave
that undergo maximum disturbance are called antinodes (labelled A in
Figure 44.11). The distance between adjacent nodes or adjacent antinodes
1s A /2, where A is the wavelength. A standing wave is therefore seen to be
a periodic variation in the vertical plane taking place on the transmission
line without travel in either direction.

i o A »| Receiving-end
termination

Figure 44.11

The resultant of the incident and reflected voltage for the open-circuit
termination may be deduced in a similar manner to that for current.
However, as stated in Section 44.7, when the incident voltage wave
reaches the termination it is reflected without phase change. Figure 44.12
shows the resultant waveforms of incident and reflected voltages at
intervals of r = T /8. Figure 44.13 shows all the resultant waveforms
of Figure 44.12(a) to (h) superimposed; again, standing waves are seen
to result. Nodes (labelled N) and antinodes (labelled A) are shown 1n
Figure 44.13 and, in comparison with the current waves, are seen to occur
90° out of phase.

If the transmission line i1s short-circuited at the termination, it 1s
the incident current that is reflected without phase change and the
incident voltage that is reflected with a phase change of 180°. Thus the
diagrams shown in Figures 44.10 and 44.11 representing current at an
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Figure 44.12 Voltage waveforms on an open-circuited transmission line

open-circuited termination may be used to represent voltage conditions
at a short-circuited termination and the diagrams shown in Figures 44.12
and 44.13 representing voltage at an open-circuited termination may be
used to represent current conditions at a short-circuited termination.
Figure 44.14 shows the rms current and voltage waveforms plotted
on the same axis against distance for the case of total reflection, deduced
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14 Receiving-and
¢ termination
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Figure 44.13
| 14
rms voltage rms current Termination

Figure 44.14

from Figures 44.11 and 44.13. The rms values are equal to the amplitudes
of the waveforms shown in Figures 44.11 and 44.13, except that they
are each divided by /2 (since, for a sine wave, rms value = (1/4/2) x
maximum value). With total reflection, the standing-wave patterns of rms
voltage and current consist of a succession of positive sine waves with the
voltage node located at the current antinode and the current node located
at the voltage antinode. The termination is a current nodal point. The rms
values of current and voltage may be recorded on a suitable rms instru-
ment moving along the line. Such measurements of the maximum and
minimum voltage and current can provide a reasonably accurate indica-
tion of the wavelength, and also provide information regarding the amount
of reflected energy relative to the incident energy that is absorbed at the
termination, as shown below.

Standing-wave ratio

Let the incident current flowing from the source of a mismatched low-
loss transmission line be [; and the current reflected at the termination be
I,.. If Iygax 1s the sum of the incident and reflected current, and Iygy 1S
their difference, then the standing-wave ratio (symbol s) on the line is
defined as:

c_Duax L1
v LI

(44.19)
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Hence s(I;—1,)=1;+1,
sl;, —sl, =1, 4+ 1,
sl; — I, =51, +1,
Iis—1)=1I,(s4+1)

I, s —1
€., — = 44.20
- I; (5’+1) [ :

The power absorbed in the termination P; = I;°Zg and the reflected power,

P, 122 Iiy?
P, =1,2Z,. Thus — = ——2 = (—”)
PI I,-*Z.[:, lr!'

Hence, from equation (44.20),

2
%:(:;:) (44.21)
i

Thus the ratio of the reflected to the transmitted power may be calculated
directly from the standing-wave ratio, which may be calculated from
measurements of Inax and /ypv. When a transmission line 1s properly
terminated there is no reflection, i.e., I, = 0, and from equation (44.19)
the standing-wave ratio is 1. From equation (44.21), whens =1, P, = 0,
1.e., there is no reflected power. In practice, the standing-wave ratio is
kept as close to unity as possible.

From equation (44.16), the reflection coefficient, p = I, /I; Thus, from

s—1
t] 44.20), — —
equation ( ). |p| P

Rearranging gives: |pl(s+1)=(s—1)
lpls + |pl =5 — 1

14+ |p|l =s(1—|p|)

from which| s = (44.22)

Equation (44.22) gives an expression for the standing-wave ratio in terms
of the magnitude of the reflection coefficient.

Problem 16. A transmission line has a characteristic impedance
of 600£0° €2 and negligible loss. If the terminating impedance of
the line 1s (400 4 j250)€2, determine (a) the reflection coefficient
and (b) the standing-wave ratio.
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(a) From equation (44.16),

eflection coefficient, p = Zo—ZR = G0ty 70
e O Zo ¥ Zr  6000° + (400 + j250)
200 — ;250 320.16/—51.34°

~ 1000 + j250  1030.7814.04°

Hence p = 0.3106/ — 65.38°

(b) From above, |p| = 0.3106. Thus from equation (44.22),

I +|pl 1+0.3106

— = 1.901
1—1|p] 1-0.3106

standing-wave ratio, s =

Problem 17. A low-loss transmission line has a mismatched load
such that the reflection coefficient at the termination 1s 0.2/—120°.
The characteristic impedance of the line 1s 80 €. Calculate (a) the
standing-wave ratio, (b) the load impedance, and (c) the incident
current flowing if the reflected current is 10 mA.

(a) From equation (44.22),
1+lp| 1402 12

standing-wave ratio, s = — = =15
8 1—|p] 1-02 08
Zo—Z
(b) From equation (44.16) reflection coefficient, p = 2 £
Lo+ Zg

Fearranging gives: p(Zg + Zg) = £y — Zp,

from which Zr(p+1)=2Zy(l — p)
Zg 1—p 1 —0.24-120° 1= (—0.10 — j0.173)

Zo 1+p 14024-1200 14(-0:10— jO.173)

_ L1040.173  1.1135/8.94°
~0.90— j0.173  0.9165/—10.88°

= 1.215419.82°
Hence load impedance Zp = Zy(1.215/19.82°)=(80)(1.215£19.82°)
=97.2/1982° Q or (91.4+j33.0)Q

and

(¢) From equation (44.20),
I s—1

I_.-:s+l
10 1.5—1 0.5

Hence — = — = ().2
I; 1541 2.5

Thus the incident current, [; = 10/0.2 = 50 mA
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Problem 18. The standing-wave ratio on a mismatched line is
calculated as 1.60. If the incident power arriving at the termina-
tion is 200 mW, determine the value of the reflected power.

From equation (44.21),
P, s—1\2 1.60 — 1) 0.60Y°
=55y e ~law)
Hence the reflected power, P, = 0.0533P, = (0.0533)(200)
= 10.66 mW

Further problems on the standing wave ratio may be found in Section 44.9
following, problems 17 to 21, page 899.

449 Further problems Phase delay, wavelength and velocity of propagation

on transmission lines . .
1 A parallel-wire air-spaced line has a phase-shift of 0.03 rad/km.

Determine (a) the wavelength on the line, and (b) the speed of trans-
mission of a signal of frequency 1.2 kHz.
[(a) 209.4 km (b) 251.3 x 10° m/s]

2 A transmission line has an inductance of 5 pH/m and a capacitance of
3.49 pF/m. Determine, for an operating frequency of 5 kHz, (a) the
phase delay, (b) the wavelength on the line and (c) the velocity of
propagation of the signal in metres per second.

[(a) 0.131 rad/km (b) 48 km (c) 240 x 10° m/s]

3 An air-spaced transmission line has a capacitance of 6.0 pF/m and the
velocity of propagation of a signal is 225 x 10° m/s. If the operating
frequency is 20 kHz, determine (a) the inductance per metre, (b) the
phase delay, and (c) the wavelength on the line.

[(a) 3.29 uH/m (b) 0.558 x 10~ rad/m (¢) 11.25 km]

Current and voltage relationships

4  When the working frequency of a cable is 1.35 kHz, its attenuation
1s 0.40 Np/km and its phase-shift is 0.25 rad/km. The sending-end
voltage and current are 8.0 V rms and 10.0 mA rms. Determine the
voltage and current at a point 25 km down the line, assuming that
the termination is equal to the characteristic impedance of the line.

[Ve=0.363/—6.25 mV or 0.363.1.90° mV
Ix = 0.454/—6.25 pA or 0.454/1.90° pA]

5 A transmission line 8 km long has a characteristic impedance
600£—30° £2. At a particular frequency the attenuation coefficient of
the line is 0.4 Np/km and the phase-shift coefficient is 0.20 rad/km.
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Determine the magnitude and phase of the current at the receiving
end if the sending-end voltage is 5/0° V rms. [0.340.—61.67 mA]

6 The voltages at the input and at the output of a transmission line
properly terminated in its characteristic impedance are 10 Vand 4 V
rms respectively. Determine the output voltage if the length of the
line 1s trebled. [0.64 V]

Characteristic impedance and propagation constant

7 At a frequency of 800 Hz, the open-circuit impedance of a length of
transmission line is measured as 500.—35° Q and the short-circuit
impedance as 300£—15° €. Determine the characteristic impedance
of the line at this frequency. [387.3.—-25° Q]

8 A transmission line has the following primary constants per loop
kilometre run: R=12Q2, L=3 mH, G =4 pS and C = 0.02 pF.
Determine the characteristic impedance of the line when the
frequency is 750 Hz. [443.34—18.95° Q]

9 A transmission line having negligible losses has primary constants:
inductance L = 1.0 mH/loop km and capacitance C = 0.20 pF/km.
Determine, at an operating frequency of 50 kHz, (a) the characteristic
impedance, (b) the propagation coefficient, (c) the attenuation and
phase-shift coefficients, (d) the wavelength on the line, and (e) the
velocity of propagation of signal in metres per second.

[(a) 70.71 Q (b) j4.443 (c¢) 0; 4.443 rad/km
(d) 1.414 km (e) 70.71 x 10° m/s]

10 At a frequency of 5 kHz the primary constants of a transmission line
are: resistance R = 12 /loop km, inductance L = (.50 mH/loop
km, capacitance C=0.01 pF/km and G = 60 pS/km. Determine
for the line (a) the characteristic impedance, (b) the propagation
coefficient, (c) the attenuation coefficient, and (d) the phase-shift
coefficient.

[(a) 248.6£—13.29° ©2 (b) 0.0795465.91°
(c) 0.0324 Np/km (d) 0.0726 rad/km]

11 A transmission line is 50 km in length and is terminated in its
characteristic impedance. At the sending end a signal emanates
from a generator which has an open-circuit e.m.f. of 20.0 V, an
internal impedance of (250 + j0)2 at a frequency of 1592 Hz. If the
line primary constants are R = 30 Q/loop km, L = 4.0 mH/loop km,
G =5.0 uS/km, and C = 0.01 pF’km, determine (a) the value of
the characteristic impedance, (b) the propagation coefficient, (c) the
attenuation and phase-shift coefficients, (d) the sending-end current,
(e) the receiving-end current, (f) the wavelength on the line, and
(g) the speed of transmission of a signal, in metres per second.

[(a) 706.6£—17° 2 (b) 0.0708£70.14°

(c) 0.024 Np/km; 0.067 rad/km

(d) 21.1£12.58° mA (e) 6.35{—178.21° mA
(f) 94.34 km (g) 150.2 x 10° m/s]
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Distortion on transmission lines

12 A cable has the following primary constants: resistance R =
90 Q/loop km, inductance L = 2.0 mH/loop km, capacitance C =
0.05 pF/km and conductance G = 3.0 uS/km. Determine the value
to which the inductance should be increased to satisfy the condition
for mmmimum distortion. [1.5 H]

13 A condition of minimum distortion is required for a cable. Its
primary constants are: R = 40 Q/loop km, L = 2.0 mH/loop km,
G =2.0 puS/km and C =0.08 pF/km. At a frequency of 100 Hz
determine (a) the increase in inductance required, (b) the propagation
coefficient, (c) the speed of signal transmission and (d) the
wavelength on the line. )
[(a) 1.598 H (b) (8.944 + j225)107°

(c) 2.795 x 10° m/s (d) 27.93 km]

Reflection coefficient

14 A coaxial line has a characteristic impedance of 100 € and 1s termi-
nated in a 400 £2 resistive load. The voltage measured across the
termination i1s 15 V. The cable is assumed to have negligible losses.
Calculate for the line the values of (a) the reflection coefficient,
(b) the incident current, (c) the incident voltage, (d) the reflected

current, and (e) the reflected voltage.
[(a) —0.60 (b) 93.75 mA (c) 9.375 V
(d) —56.25 mA (e) 5.625 V]

15 A long transmission line has a characteristic impedance of
(400— j50)Q2 and 1s terminated in an impedance of (1) (400 + j50)€2,
(1) (500 + j60)2 and (11) 400£0° Q. Determine the magnitude of
the reflection coefficient in each case.
[(1) 0.125 (11) 0.165 (111) 0.062]

16 A transmission line which 1s loss-free has a characteristic
impedance of 60020° 2 and i1s connected to a load of impedance
(400 4+ j300)2. Determine (a) the magnitude of the reflection
coefficient and (b) the magnitude of the sending-end voltage if the
reflected voltage is 14.60 V [(a) 0.345 (b) 42.32 V]

Standing-wave ratio

17 A transmission line has a characteristic impedance of 500/0° € and
negligible loss. If the terminating impedance of the line is
(320 + j200)Q2 determine (a) the reflection coefficient and (b) the
standing-wave ratio. [(a) 0.319/—61.72° (b) 1.937]

18 A low-loss transmission line has a mismatched load such that the
reflection coefficient at the termination 1s 0.5£—135°. The character-
istic impedance of the line is 60 €. Calculate (a) the standing-wave
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ratio, (b) the load impedance, and (c) the incident current flowing if

the reflected current 1s 25 mA.
[(a) 3 (b) 113.93/43.32° Q (c) 50 mA]

19 The standing-wave ratio on a mismatched line 1s calculated as 2.20. If
the incident power arriving at the termination is 100 mW, determine
the value of the reflected power.

[14.06 mW]

20 The termination of a coaxial cable may be represented as a 150 2
resistance in series with a 0.20 pH inductance. If the charactenistic
impedance of the line 1s 100£0° €2 and the operating frequency is
80 MHz, determine (a) the reflection coefficient and (b) the standing-
wave ratio. [(a) 0.417.—138.35° (b) 2.43]

21 A cable has a characteristic impedance of 70£0° €. The cable is
terminated by an impedance of 60/30° 2. Determine the ratio of the
maximum to minimum current along the line. [1.77]
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Figure 45.5

I
Inveg = ——+k

45.7
R (45.7)

from which,

where k 1s a constant.
At time 7 = 0 (i.e., at the instant of opening the switch), ve =V
Substituting r = 0 and v¢ = V in equation (45.7) gives:

InV=0+4+k

Substituting k = In V into equation (45.7) gives:

§
Inve = ~“CR +InV
I
and Invg —InV = ——
CR
Ve I
In— =——
V CR
and = g R
from which, | v, = Ve /R (45.8)

1.e., the capacitor voltage, v, decays to zero after a period of time, the
rate of decay depending on CR, which is the time constant, T (see
Section 17.3, page 260). Since vg + v¢ = 0 then the magnitude of the
resistor voltage, vg, 18 given by:

vg = Ve /R (45.9)
-Efl'f d \ 1 =
and since i = C— = C— (Ve /) = (CV (__) ~1/CR
nd since i o = (Ve V=1CY) o e
1.e., the magnitude of the current, | i = %e-”ﬂ? (45.10)

Problem 2. A d.c. voltage supply of 200 V is connected across
a 5 puF capacitor as shown in Figure 45.5. When the supply is
suddenly cut by opening switch S, the capacitor is left isolated
except for a parallel resistor of 2 MS2. Calculate the p.d. across the
capacitor after 20 s.

From equation (45.8), v¢c = Ve /¢

After 20 5. ve = 200~ 20/Gx107°x2x10%) _ 20y) ¢~2 = 200(0.13534)
=27.07V
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