A Note about 7 segment LED display.

This article is about how to interface a seven segment LED display
to an 8051 microcontroller. 7 segment LED display is very
popular and it can display digits from 0 to 9 and quite a few
characters like A, b, C, ., H, E, e, F, n, o,t,uy, etc. Knowledge about
how to interface a seven segment display to a micro controller is
very essential in designing embedded systems. A seven segment
display consists of seven LEDs arranged in the form of a squarish
‘8’ slightly inclined to the right and a single LED as the dot
character. Different characters can be displayed by selectively
glowing the required LED segments. Seven segment displays are
of two types, common cathode and common anode. In common
cathode type , the cathode of all LEDs are tied together to a single
terminal which is usually labeled as ‘com‘ and the anode of all
LEDs are left alone as individual pins labeled as a, b, ¢, d, e, f, g &
h (or dot) . In common anode type, the anode of all LEDs are tied
together as a single terminal and cathodes are left alone as
individual pins. The pin out scheme and picture of a typical 7

segment LED display is shown in the image below.

g fcoma b

e dcom c dot

- v marnt'I l': s o

Digit drive pattern.

Digit drive pattern of a seven segment LED display is simply the
different logic combinations of its terminals ‘a’ to ‘h‘ in order to
display different digits and characters. The common digit drive

patterns (0 to 9) of a seven segment display are shown in the

table below.
Digit a b c d e f g
0 1 1 1 | 1 5 § 0
1 0 1 1 0 0 0 0
2 1 1 0 1 1 0 |
3 1 1 1 1 0 0 1
4 0 1 1 0 0 1 1
5 1 0 1 1 0 1 1
6 1 0 1 1 x | 1 1
7 1 1 1 0 0 0 0
8 : s § 1 1 1 1 1
9 1 5 ! 1 3 | 0 1 <

Interfacing seven segment display to 8051.

Interfacing seven segment display to 8051.

=5 AT ey
|31 |m
EA Veo
D1
+ 4| C3 Common cathode
3y 7 rouenov sl % seven segment LED display
= a7 B VA s
3 RS i__ b
8.2% i1
ATBSSS1 i = V;";‘h’ ¢
PalaaaA— | E :
prs|” vﬁ\, | g .
prsl’ »Efi',m ‘ " i
c1
St 12| xravy pr 7 m
33pF J_ X1
= R3 te R10 = 5600hm
CzTnusnzuuz
— LIP
33pF GHD
‘]’20
5 :
Interfacing 7 segment display to 8051 www_circuitstoday com

Interfacing

cogrmant dienlb 14 3net
g/ segment dispiay to 8051

The circuit diagram shown above is of an AT89S51
microcontroller based 0 to 9 counter which has a 7 segment LED
display interfaced to it in order to display the count. This simple
circuit illustrates two things. How to setup simple 0 to 9 up
counter using 8051 and more importantly how to interface a
seven segment LED display to 8051 in order to display a
particular result. The common cathode seven segment display D1
iIs connected to the Port 1 of the microcontroller (AT89551) as
shown in the circuit diagram. R3 to R10 are current limiting
resistors. S3 is the reset switch and R2,C3 forms a debouncing
circuitry. C1, C2 and X1 are related to the clock circuit. The

software part of the project has to do the following tasks.

* Form a0 to 9 counter with a predetermined delay (around
1/2 second here).

» Convert the current count into digit drive pattern.

* Put the current digit drive pattern into a port for displaying.

All the above said tasks are accomplished by the program given
below.

Program.

ORG 000H /finitial starting address

START: MOV A,#00001001B // initial value of accumulator
MOV B,A

MOV RO,#0AH //Register RO initialized as counter which counts
from10to O

LABEL: MOV A,B

INCA

MOV B,A

MOVC A,@A+PC // adds the byte in A to the program counters
address

MOV P1,A

ACALL DELAY // calls the delay of the timer

DEC RO//Counter RO decremented by 1

MOV A,RO // RO moved to accumulator to check if it is zero in next
instruction.

JZ START //Checks accumulator for zero and jumps to START.
Done to check if counting has been finished.

SIMP LABEL

DB 3FH // digit drive pattern for O

DB 06H // digit drive pattern for 1

DB 5BH // digit drive pattern for 2

DB 4FH // digit drive pattern for 3

DB 66H // digit drive pattern for 4

DB 6DH // digit drive pattern for 5

DB 7DH // digit drive pattern for 6

DB 07H // digit drive pattern for 7

DB 7FH // digit drive pattern for 8
DB 6FH J/ digit drive pattern for 9

o

DELAY: MOV R4,#05H // subroutine for delay
WAIT1: MOV R3,#00H

WAIT2: MOV R2,#00H

WAIT3: DINZ R2,WAIT3

DINZ R3,WAIT2

DINZ R4,WAIT1

RET

END

About the program.

Instruction MOVC A,@A+PC is the instruction that produces the
required digit drive pattern for the display. Execution of this
instruction will add the value in the accumulator A with the
content of the program counter(address of the next instruction)
and will move the data present in the resultant address to A. After

this the program resumes from the line after MOVC A,@A+PC.

In the program, initial value in A is 00001001B. Execution of

MOVC A,@A+PC will add 00001001B to the content in PC (
address of next instruction). The result will be the address of
label DB 3FH (linel5) and the data present in this address ie 3FH
(digit drive pattern for 0) gets moved into the accumulator. Moving
this pattern in the accumulator to Port 1 will display 0 which is
the first count.

At the next count, value in A will advance to 00001010 and after
the execution of MOVC A,@+PC ,the value in A will be 06H which
is the digit drive pattern for 1 and this will display 1 which is the

next count and this cycle gets repeated for subsequent counts.

The reason why accumulator is loaded with 00001001B (9 in
decimal) nitially is that the instructions from line 9 to line 15

consumes 9 bytes in total.

The lines 15 to 24 in the program which starts with label DB can
be called as a Look Up Table (LUT). label DB is known as Define
Byte — which defines a byte. This table defines the digit drive
patterns for 7 segment display as bytes (in hex format). MOVC
operator feiches the byte from this table based on the result of

adding PC and contents in the accumulator.

Register B is used as a temporary storage of the initial value of the
accumulator and the subsequent increments made to

accumulator to fetch each digit drive pattern one by one from the
look up table(LUT).

Note:- In line 6, Accumulator is incremented by 1 each time
(each loop iteration) to select the next digit drive pattern. Since
MOVC operator uses the value in A to fetch the digit drive pattern
from LUT, value in ACC has to be incremented/manipulated
accordingly. The digit drive patterns are arranged consecutively in
LUT.

Register RO is used as a counter which counts from 10 down to 0.
This ensures that digits from o to 9 are continuously displayed in
the 7 segment LED. You may note lines 4, 11, 12, and 13 in the
above program. Line 4 initializes RO to 10 (OAh). When the
program counter reaches line 11 for the first time, 7 segment LED
has already displayed 0. So we can reduce one count and that is
why we have written DEC Ro. We need to continuously check if RO
has reached full count (that is 0). In order to do that lines 12 and
13 are used. We move RO to accumulator and then use the Jump
if Zero (JZ) instruction to check if accumulator has reached zero.
If Acc=0, then we makes the program to jump to START (initial
state) and hence we restart the 7 segment LED to display from O
to 9 again. If Acc not equal to zero, we continue the program to

display the next digit (check line 14).

Multiplexing 7 segment display to 8051.

Suppose you need a three digit display connected to the 8051.
Each 7 segment display have 8 pins and so a total amount of 24
pins are to the connected to the microcontroller and there will be
only 8 pins left with the microcontroller for other input output
applications. Also the maximum number of displays that can be
connected to the 8051 is limited to 4 because 8051 has only 4
ports. More over three 3 displays will be ON always and this
consumes a considerable amount of power. All these problems
associated with the straight forward method can be solved by

multiplexing .

In multiplexing all displays are connected in parallel to one port
and only one display is allowed to turn ON at a time, for a short
period. This cycle is repeated for at a fast rate and due to the
persistence of vision of human eye, all digits seems to glow. The

main advantages of this method are

e Fewer number of port pins are required .
e Consumes less power.

« More number of display units can be interfaced (maximum

24).

The circuit diagram for multiplexing 2 seven segment displays to
the 8051 is shown below.

BV -5 5y
[31 |4n
£a ver
i = Commaon cathods
o| s A3 to F10 = 560ohm S LED disgisy
s34 N pafl 2 » -
LA o) :
i RS — b &
B3 PLE—AAAA—
g”“ = i He £ y
. LI P2 t—..'-\,:-:,n,—]]
i pab—Aaan— | ¥
t 1
F] Yy 8 . . .
. |- gam cam
A LA B= AE nrr'_*i:,:ﬁu__. & s
3-'3‘HFJ_ x1 BCE4E Bs4eg
=l i R Ri2
czTn.mqum Pao AV
|- NTALZ paln L&l phm 550 ohm =
13 D l—r
J.:u
Multiplexing 7 segement displays 1o 8051 W CIrT uitstoday com

Multiplexing 7 segement display to 8051

When assembled and powered on, the circuit will display the
number "16" and let us see how it is done. Initially the first display
is activated by making P3.0 high and then digit drive pattern for
“1" is loaded to the Port 1. This will make the first display to
show “1". In the mean time P3.1 will be low and so do the second
display will be OFF. This condition is maintained for around 1ms
and then P3.0 is made low. Now both displays will be OFF. Then
the second display is activated by making P3.1 high and then the
digit drive pattern for “6" is loaded to the port 1. This will make
the second display to show “6”. In the mean time P3.0 will be low
and so the second display will be OFF. This condition is
maintained for another 1ms and then port 3.1 is made low. This
cycle is repeated and due to the persistence of vision you will feel

itas “16".

Interfacing LED and push
button switch to 8051

This article is all about how to interface push hutton switches to
an 8051 microcontroller. Push button switches are widely used in
embedded system projects and the knowledge about interfacing
them to 8051 is very essential in designing such projects. A
typical push button switch has two active terminals that are
normally open and these two terminals get internally shorted
when the push button is depressed. Images of a typical

pushbutton switch is shown below.

Circuit diagram.

5V 5V +5V +5V 5V 5V
k. 3 1]
31 40
EA Vee
R1 R2
g 2L C3 10K 10K
=
S3 *. 10UFHOV
® | rat 39
P00
po 1|38
R3
B 2K ic1 q_ s s2
ATBISS! l l
po.7|32 R4 NN py
c1 19 5680 ohm LED
:{ + XTALY
33pF X1
=3
CZTi 1.0592MHz o
D — XTALZ
I3pF GND
J_zu
-

-

i # ¥ A NS A . I
Interfacng 8051 and pushbutton

The circuit diagram for interfacing push button switch to 8051 is
shown above. AT89S51 is the microcontroller used here. The
circuit is so designed that when push button S1 is depressed the
LED D1 goes ON and remains ON until push button switch S2 is
depressed and this cycle can be repeated. Resistor R3, capacitor
C3 and push button S3 forms the reset circuitry for the
microcontroller. Capacitor C1, C2 and crystal X1 belongs to the
clock circuitry. R1 and R2 are pull up resistors for the push

buttons. R4 is the current limiting resistor for LED.

Program.

MOV PO,#83H // Initializing push button switches and initializing
LED in OFF state.
READSW: MQV A,PO // Moving the port value to Accumulator.
RRC A // Checking the vale of Port 0 to know if switch 1 is ON or
not
JC NXT // If switch 1 is OFF then jump to NXT to check if switch 2
is ON
CLR P0O.7 // Turn ON LED because Switch 1 is ON
SIMP READSW /] Read switch status again.
NXT: RRC A // Checking the value of Port O to know if switch 2 is
ON or not
JC READSW // Jumping to READSW to check status of switch 1
again (provided switch 2 is OFF)
SETB P0.7 // Turning OFF LED because Switch 2 is ON
SIMP READSW // Jumping to READSW to read status of switch 1
again,
END

The Logic

The first instruction — MOV PO #83H - is to turn LED off (Hex 83
in binary = 10000011) and to initialize switches 1 and 2. Switch 1
is connected to port 0.0 and switch 2 is connected to port 0.1.

Also note that LED is connected to port 0.7.

Note:- Po.0 = 1 means switch 1 is OFF and Po.1 = 1 means switch
2 is OFF. P0.0 = o means switch 1 is ON and p0.1 = 0 means
switch 2 is ON. LED turns ON when P0.7 = 0 and turns OFF when
PO.7=1

The program has two labels — READSW and NXT. It's all about
reading switch values — that is P0.0 and PO.1. We are using RRC
Instruction to read switch values. The values of port 0 is moved to
accumulator. Since port 0 and 1 are used to interface switches 1
and 2, we can get the values of both port bits in LSB”s 0 and 1 of
accumulator by using MOV A,PO instruction. RRC — means -
rotate right through carry. You can learn more about this
instruction here — 8051 programming tutorial 1. What RRC do is
simple — it will move value of port 0.0 to the carry bit. Now we can
check the carry bit using instruction JC — which means “jump if
carry is set” . If carry is SET — then it means port0.0 =1 and this
means switch 1 is OFF. If switch 1 is OFF then we have to check

status of switch 2 and that is why we jump to label NXT.

In the mean time if switch 1 is pressed — then value of port 0.0
will be equal to zero. This will get moved to accumulator and
hence an RRC will result in carry bit = o. If carry bit = 0 then result
of executing JC instruction is negative and it will not jump. The
next instruction will get executed — that is CLR P0.7. This clears
port 0.7 to zero and hence LED will turn ON. Once turned On- LED

will be kept On until switch 2 is pressed.

The status of switch 2 is checked in NXT label. When NXT is
executed, we are using RRC for the second time consecutively.
This means, the carry bit now holds the value of P0.1 — which is
status of switch 2. If carry bit = 1 then switch 2 is OFF. This
means LED should not be turned OFF. If carry bit = 0 then LED
should be turned OFF (The instruction SETB P0.7 turns LED OFF)

Toggling 2 LED with a pushbutton using interrupt.

This circuit demonstrates how to toggle two LEDs with a single
push button using the external interrupts. Interrupt is an
asynchronous signal (either hardware or software) which
Indicates the processor to make a change in current execution.
When the processor receives a valid interrupt signal it saves the
current state and then goes to execute a set of predefined steps
called interrupt service routine (ISR). After executing ISR, the
processor goes back to the point where it deviated and continues
from there. To learn more about interrupts check this link.

External interrupt handling in 8051.

Circuit diagram.

Y %
3 40
EA Vec
R1
® +| C3 é S5
—— 1
1 ‘L T 1ournov
9 RST 12

®so
mgssr I'l

NT O -
8.2K icq

M NAN

P1.0
c1 18 S80 ohm LED
b XTAL1

33p1=: X1 o1 1 L2 R4 "x"\@gz
czTn 0S92MHz 560 ohm LED
4 18] xraLz
33pF GHD
1:1:
- e
Toggling LED using 8051 with interrupt

In the circuit shown above D1, D2 (the LEDs to be toggled) are
connected to P1.0 and P1.1 respectively. R2 and R4 limits the
current through the LEDs. The push button switch S2 is
connected to the INTO pin where R1 is a pull up resistor and C4 is
the debouncing capacitor. C3, R3 and S3 forms the reset circuitry.
Capacitors C2, C2 and crystal X1 are related to the clock circuitry.
When powered ON LED D1 will be OFF and and LED D2 will be
ON. Whenever push button switch S2 is pressed it creates an
interrupt and the software makes the status of P1l.o and P1.1 to

toggle which gets reflected in the LEDs.

Program.

ORG OO0OH // starting address
SIJMP LABEL //jumps to the LABEL
ORG O03H // starting address for the ISR(INTO)
ACALL ISR // calls the ISR (interrupt service routine)
RETI // returns from the interrupt
LABEL: MOV A,#10000000B // sets the initial stage of the LEDs
(D1 OFF & D2 ON)
MAIN: // main function that sets the interrupt parameters
SETB IP.0 // sets highest priority for the interrupt INTO
SETB TCON.O // interrupt generated by a falling edge signal at
INTO (pinl2)
SETB IE.O // enables the external interrupt
SETB IE.7 // enables the global interrupt control
SIJMP MAIN // jumps back to the MAIN subroutine
ISR: // interrupt service routine
CPL A /| complements the current value in accumulator A
MOV P1,A /[moves the current accumulator value to port 1
RET // jumps to RETI
END

4x4 Matrix Keypad Interfacing with 8051
Microcontroller

By Jayant © Jul 08. 2015

4x4 Matrix Keypad Interfacing with 8051 Microcontroller

Keypads are widely used input devices being used in various eiectronics and embedded projects. They
are used to take inputs in the form of numbers and albhabets, and feed the same into system for further

processing. In this tutonal we are going to interface a 4x4 matrix keypad with 8051 microcontroller.

4X4 Matrix Keypad

Before we interface the keypad with microcontroller, first we need to understand how it warks. Matrix
keypad consists of set of Push buttons, which are interconnected. Like in our case we are using 4%4
matrix keypad, in which there are 4 push buttons in each of four rows. And the terminals of the push
buttons are connected according to diagram, In first row, one terminal of all the 4 push buttons are

connected together and another terminal of 4 push buttons are representing each of 4 columns, same

goes for each row. So we are getting 8 terminals to connect with a microcontroller.

—4f=L@ #—if=km
1 1
Lam -_4f=Lm
[|
1h-o-=hﬂui| --a'sz
(=2 Hﬂ:@_i ‘
1C1 c2

eres4d2

Interfacing keypad with 8051 microcontroller (AT89552)

First we need to irterface a LCD module to display the data which will be feed through KEYPAD, so

| 1
” baTaL? umae
il o mile
. i = iﬁwﬁ
T R
- = o naT PRTIADT
i R = FES e
=0 Ju:m - gf ?ﬁﬁﬁ
=re — 4
- B2 hAY
BEER Oh i
:IE’ P ﬁ:EE
I P
(7| B [PAATD
Baom | o
ﬁn T PATHD

LCD

|:Ii|‘j 4 Iﬂl'—'Li Hhél‘ﬁ u‘c it a1 Mﬁl'ﬁl*lh ldlh'Lﬁ

Pl 0 o, PIN 20 Ground

please go through "LCD Imerfacing with 8051 Microcontroller” article before interfacing KEYPAD.

First we need to interface a LCD module to display the data which will be feed through KEYPAD, so
please go through “LCD Interfacing with 8051 Microcontroller” article before interfacing KEYPAD.

As shown in above circult diagram, to interface Keypad, we need to connect 8 terminals of the keypad to
any port (8 pins) of the microcontroller. Like we have connected keypad terminals to Port 1 of 8051
Whenever any button is pressed we need to get the location of the button, means the comresponding

ROW an COLUMN no. Once we get the location of the button, we can print the character accordingly.

Now the question is how to get the location of the pressed button? | am going to explain this in below

steps and also want you to look at the code:
1. First we have made all the Rows to Logic level 0 and all the columns to Logic level 1

2. Whenever we press a button, column and row corresponding to that button gets shorted and makes
the corresponding column to logic level 0. Because that column becomes connected (shorted) to the

row, which is at Logic level 0. So we get the column no. See main() function.

G o —nm) —um o a0 —0 —] g
91 u_[o—l o—[_ ""Hl o_l_ o_.l °—l b Rl
LT I [= Ll ="

i e s sl L. » gl niialas i aks KON
o P Lp .u..a = L = L
0 0-] 0 o-—E i n—_l_ D—i g] o—l n—d o—l p—=0 =0 I"u:l.Rg
I—u‘moil n—onﬁ.;l 4|—o—=5-£—l 1 o—l |_} r—-unwe-l r--u P-l H—O#OE—J_ r—-o‘=5d—tl \n{.
By | 1) 5% T s 1) o @ Clm i
€1 c2 =] c4 Cl Q2 c4

FINDING COLUMN No.

3. Now we need to find the Row no., so we have created four functions corresponding to each column.

Like if any button of column one is pressed, we call function row_finder1(), to find the row no

4. In row_finder1() function, we reversed the logic levels, means now all the Rows are 1 and columns are
0. Now Row of the pressed button shouid be 0 because it has become connected (shorted) to the

column whose buttan is pressed, and all the columns are at 0 logic. So we have scanned all rows for 0.

E
E
E

=< o—l —0 o—l 0 o—l —n“ma-‘j ;-.E" - ':’-I —nn?-ﬁ'j _o.zl.:i:' _o_l:to_:il 5 .
[P b (e B
+ + - - +— |7
= F= =" = o
b0 —1 0——] o ﬁ-—l 9‘—1 !'“ o ot| 1r—n":'6w—| -—uniﬂﬁ -—u'-:’a':il a
¢ lo Il s ® la B & "
c1 2 a ca c1 2 (] ca

| FINDING ROW No.|

5. So whenever we find the Row at logic 0, means that is the row of pressed button. So now we have

column no {got in step 2) and row no., and we can print no, of that button using lcd_data function

Same procedure follows for every button press. and we are using while(1), to continuously check,

whether button is pressed or noL

